Advertisement

Materials Characterization Using Scanning Tunneling Microscopy: From Fundamentals to Advanced Applications

  • Suryakanti Debata
  • Trupti R. Das
  • Rashmi Madhuri
  • Prashant K. SharmaEmail author
Chapter

Abstract

Like all other imaging techniques, scanning tunneling microscopy (STM) is an ingenious approach for obtaining images with sufficiently high resolution. On the other hand, STM is beneficial for the deposition of metal over a substrate by manipulation of single atoms/molecules. This technique is greatly helpful for the nanoscience domain, providing the facility to study the property of materials at the atomic scale. The present topic covers most of the important aspects of the operation of STM, starting from theoretical background to instrumentation. The use of STM for topographical and spectroscopic imaging is firmly discussed. The potential application of STM in the technological field, surface science, solid-state physics, biology, and organic chemistry is manifested with concrete evidence, with which we expect to provide a complete idea of STM characterization technique to the readers.

Keywords

Scanning tunneling microscopy Nanodimensional probe Topographical and spectroscopic imaging Surface science Advanced applications 

Notes

Acknowledgments

Authors are thankful to the Department of Science and Technology, Government of India, for sanction of Fast Track Research Project for Young Scientists to Dr. Prashant K. Sharma (Ref. No.: SR/FTP/PS-157/2011) and Dr. Rashmi Madhuri (Ref. No.: SB/FT/CS-155/2012). Dr. Sharma (FRS/34/2012-2013/APH) and Dr. Madhuri (FRS/43/2013-2014/AC) are also thankful to the Indian Institute of Technology (Indian School of Mines), Dhanbad, for grant of Major Research Project under Faculty Research Scheme. We are also thankful to the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India, for major research project (Sanction No. 34/14/21/2014-BRNS/0295). Suryakanti and Trupti are also thankful to the Indian Institute of Technology (Indian School of Mines), Dhanbad, for Fellowship.

References

  1. 1.
    Binning, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57.CrossRefGoogle Scholar
  2. 2.
    Gasiorowicz, S. (2003). Quantum physics. New York: Wiley.Google Scholar
  3. 3.
    Sun, X. (2010). Engineering supramolecular architectures on insulating and metal surfaces studied by scanning tunneling microscopy. Doctor of Philosophy. Groningen.Google Scholar
  4. 4.
    Tersoff, J., & Hamann, D. R. (1985). Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805.CrossRefGoogle Scholar
  5. 5.
    Ekvall, I., Wahlstrom, E., Claesson, D., Olin, H., & Olsson, E. (1999). Preparation and characterization of electrochemically etched W tips for STM. Science and Technology, 10, 11–18.Google Scholar
  6. 6.
    Biegelsen, D. K., Ponce, F. A., & Tramontana, J. C. (1987). Ion mined tips for scanning tunneling microscopy. Applied Physics Letters, 50, 696.CrossRefGoogle Scholar
  7. 7.
    Valencia, V. A., Thaker, A. A., Derouin, J., Valencia, D. N., Farber, R. G., Gebel, D. A., & Killelea, D. R. (2014). Preparation of scanning tunneling microscopy tips using pulsed alternating current etching. Journal of Vacuum Science and Technology A, 33, 023001.CrossRefGoogle Scholar
  8. 8.
    Albrektsen, O., Salemink, H. W. M., Morch, K. A., & Tholen, A. R. (1994). Reliable tip preparation for high-resolution scanning tunneling microscopy. Journal of Vacuum Science and Technology B, 12, 3187.CrossRefGoogle Scholar
  9. 9.
    Leng, Y. (2008). Materials characterization: Introduction to microscopic and spectroscopic methods. Singapore: Wiley.CrossRefGoogle Scholar
  10. 10.
    Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V., & Katayama, M. (2003). Surface science: An introduction. Berlin: Springer.CrossRefGoogle Scholar
  11. 11.
    Ziegler, J. G., & Nichols, N. B. (1993). Optimum settings for automatic controllers. The Journal of Dynamic Systems, Measurement, and Control, 115, 220–222.CrossRefGoogle Scholar
  12. 12.
    Sarid, D., Henson, T., Bell, L. S., & Sandroff, C. J. (1988). Scanning tunneling microscopy of semiconductor clusters. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 6, 424.CrossRefGoogle Scholar
  13. 13.
    Sand, D., McGinnis, B. P., & Henson, D. (1988). Four-wave mixing and scanning tunneling microscopy of semiconductor clusters. Proc. SPIE 0881, Optical Computing and Nonlinear Materials 114.Google Scholar
  14. 14.
    Sarid, D., Henson, T. D., Armstrong, N. R., & Bell, L. S. (1988). Probing of basal planes of MoS2 by scanning tunneling microscopy. Applied Physics Letters, 52, 2252.CrossRefGoogle Scholar
  15. 15.
    Becker, R. S., Golovchenko, J. A., & Swartzentruber, B. S. (1985). Electron interferometry at crystal surfaces. Physical Review Letters, 55, 987.CrossRefGoogle Scholar
  16. 16.
    Binnig, G., Frank, K. H., Fuchs, H., Garcia, N., Reihl, B., Rohrer, H., Salvan, F., & Williams, A. R. (1985). Tunneling spectroscopy and inverse photoemission: Image and field states. Physical Review Letters, 55, 991–994.CrossRefGoogle Scholar
  17. 17.
    Tromp, R. M. (1989). Spectroscopy with the scanning tunnelling microscope: A critical review. Journal of Physics: Condensed Matter, 1, 10211–10228.Google Scholar
  18. 18.
    Stroscio, J. A., Feenstra, R. M., Newns, D. M., & Fein, A. P. (1988). Voltage-dependent scanning tunneling microscopy imaging of semiconductor surfaces. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 6, 499.CrossRefGoogle Scholar
  19. 19.
    Natterer, F. D., Ha, J., Baek, H., Zhang, D., Cullen, W. G., Zhitenev, N. B., Kuk, Y., & Stroscio, J. A. (2016). Scanning tunneling spectroscopy of proximity superconductivity in epitaxial multilayer grapheme. Physical Review B, 93, 045406.CrossRefGoogle Scholar
  20. 20.
    Sakurai, T., & Wille, L. (Eds.). (2000). Advances in scanning probe microscopy. Berlin: Springer.Google Scholar
  21. 21.
    Payne, M. C., & Inkson, J. C. (1985). Measurement of work functions by tunneling and the effect of the image potential. Surface Science, 159, 485–495.CrossRefGoogle Scholar
  22. 22.
    Simmons, J. G. (1963). Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of Applied Physics, 34, 1793.CrossRefGoogle Scholar
  23. 23.
    Joshi, S., Ecija, D., Koitz, R., Iannuzzi, M., Seitsonen, A. P., Hutter, J., Sachdev, H., Vijayaraghavan, S., Bischoff, F., Seufert, K., Barth, J. V., & Auwärter, W. (2012). Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Letters, 12, 5821–5828.CrossRefGoogle Scholar
  24. 24.
    Vitali, L., Levita, G., Ohmann, R., Comisso, A., De Vita, A., & Kern, K. (2010). Portrait of the potential barrier at metal–organic nanocontacts. Nature Materials, 9, 320–323.CrossRefGoogle Scholar
  25. 25.
    Muralt, P., & Pohl, D. W. (1986). Scanning tunneling potentiometry. Applied Physics Letters, 48, 514.CrossRefGoogle Scholar
  26. 26.
    Muralt, P., Meier, H., Pohl, D. W., & Salemink, H. W. M. (1987). Scanning tunneling microscopy and potentiometry on a semiconductor heterojunction. Applied Physics Letters, 50, 1352.CrossRefGoogle Scholar
  27. 27.
    Baddorf, A. P. (2007). Scanning tunneling potentiometry: The power of STM applied to electrical transport. In S. Kalinin & A. Gruverman (Eds.), Scanning probe microscopy (pp. 11–30). New York: Springer.CrossRefGoogle Scholar
  28. 28.
    Meyer, E., Hug, H. J., & Bennewitz, R. (2004). Scanning probe microscopy: The lab on a tip. New York: Springer.CrossRefGoogle Scholar
  29. 29.
    Fink, H.-W. (1986). Mono-atomic tips for scanning tunneling microscopy. IBM Journal of Research and Development, 30, 460–465.CrossRefGoogle Scholar
  30. 30.
    Hofer, W. A., & Redinger, J. (2000). Scanning tunneling microscopy of binary alloys: First principles calculation of the current for PtX (100) surfaces. Surface Science, 447, 51–61.CrossRefGoogle Scholar
  31. 31.
    Lucier, A-S. (2004). Preparation and characterization of tungsten tips suitable for molecular electronics studies. Master’s thesis. McGill University.Google Scholar
  32. 32.
    Melmed, A. J. (1991). The art and science and other aspects of making sharp tips. Journal of Vacuum Science and Technology B, 9, 601.CrossRefGoogle Scholar
  33. 33.
    Volcke, C. (2010). Chemical modification of scanning tunneling microscopy tips for identification of functional groups in self-assembled monolayers. In A. Mendez-Vilas & J. Diaz (Eds.), Microscopy: Science, technology, applications and education (pp. 1293–1301). Spain: Formatex.Google Scholar
  34. 34.
    Hahn, J. R., & Ho, W. (2001). Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. Physical Review Letters, 87, 196102.CrossRefGoogle Scholar
  35. 35.
    Kuk, Y., & Silverman, P. J. (1989). Scanning tunneling microscope instrumentation. The Review of Scientific Instruments, 60, 165.CrossRefGoogle Scholar
  36. 36.
    Hofer, W. A., Fisher, A. J., Wolkow, R. A., & Grutter, P. (2001). Surface relaxations, current enhancements, and absolute distances in high resolution scanning tunneling microscopy. Physical Review Letters, 87, 236104.CrossRefGoogle Scholar
  37. 37.
    Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558.CrossRefGoogle Scholar
  38. 38.
    Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100, 12974–12980.CrossRefGoogle Scholar
  39. 39.
    Turchi, P. E. A., Gonis, A., & Colombo, L. (Eds.). (1998). Tight-binding approach to computational materials science. Pennsylvania: Materials Research Society.Google Scholar
  40. 40.
    Ness, H., & Fisher, A. J. (1997). Influence of the tip-induced electric field on the STM contrast of chemisorbed C2H4 on the Si(001) surface. Physical Review B, 55, 10081–10093.CrossRefGoogle Scholar
  41. 41.
    Hofer, W. A. (2003). Challenges and errors: Interpreting high resolution images in scanning tunneling microscopy. Progress in Surface Science, 71, 147–183.CrossRefGoogle Scholar
  42. 42.
    Sacks, W., Gauthier, S., Rousset, S., Klein, J., & Esrick, M. A. (1987). Surface topography in scanning tunneling microscopy: A free-electron model. Physical Review B, 36, 961.CrossRefGoogle Scholar
  43. 43.
    Heinze, S., Blugel, S., Pascal, R., Bode, M., & Wiesendanger, R. (1998). Prediction of bias-voltage-dependent corrugation reversal for STM images of bcc (110) surfaces: W(110), Ta(110), and Fe(110). Physical Review B, 58, 16432.CrossRefGoogle Scholar
  44. 44.
    Rutter, G. M., Guisinger, N. P., Crain, J. N., Jarvis, E. A. A., Stiles, M. D., Li, T., First, P. N., & Stroscio, J. A. (2007). Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Physical Review B, 76, 235416.CrossRefGoogle Scholar
  45. 45.
    Chen, C. J. (2008). Introduction to scanning tunneling microscopy. New York: Oxford University Press.Google Scholar
  46. 46.
    Takahashi, Y., Miyamachi, T., Ienaga, I., Kawamura, N., Ernst, A., & Komori, F. (2016). Orbital selectivity in scanning tunneling microscopy: Distance-dependent tunneling process observed in iron nitride. Physical Review Letters, 116, 056802.CrossRefGoogle Scholar
  47. 47.
    Prüser, H. (2015). Scanning tunneling spectroscopy of magnetic bulk impurities: From a single kondo atom towards a coupled system. Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  48. 48.
    Selloni, A., Carnevali, P., Tosatti, E., & Chen, C. D. (1986). Voltage-dependent scanning-tunneling microscopy of a crystal surface: Graphite. Physical Review B, 34, 7406.CrossRefGoogle Scholar
  49. 49.
    Hamers, R. J., Tromp, R. M., & Demuth, J. E. (1986). Surface electronic structure of Si(111)-(7 x 7) resolved in real space. Physical Review Letters, 56, 1972.CrossRefGoogle Scholar
  50. 50.
    Deniz, O., Sanchez-Sanchez, C., Dumslaff, T., Feng, X., Narita, A., Mullen, K., Kharche, N., Meunier, V., Fasel, R., & Ruffieux, P. (2017). Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Letters, 17, 2197–2203.CrossRefGoogle Scholar
  51. 51.
    Braun, K.-F., & Hla, S.-W. (2005). Probing the conformation of physisorbed molecules at the atomic scale using STM manipulation. Nano Letters, 5, 73–76.CrossRefGoogle Scholar
  52. 52.
    Crommie, M. F., Lutz, C. P., & Eigler, D. M. (1993). Confinement of electrons to quantum corrals on a metal surface. Science, 262, 218.CrossRefGoogle Scholar
  53. 53.
    Hla, S.-W., Braun, K.-F., Wassermann, B., & Rieder, K.-H. (2004). Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Physical Review Letters, 93, 208302.CrossRefGoogle Scholar
  54. 54.
    Heinrich, J. A., Gupta, J. A., Lutz, C. P., & Eigler, D. M. (2004). Singleatom spin-flip spectroscopy. Science, 306, 466.CrossRefGoogle Scholar
  55. 55.
    Jamneala, T., Madhavan, V., & Crommie, M. F. (2001). Kondo response of a single antiferromagnetic chromium trimer. Physical Review Letters, 87, 256804.CrossRefGoogle Scholar
  56. 56.
    Hla, S. W., Bartels, L., Meyer, G., & Rieder, K.-H. (2000). Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Physical Review Letters, 85, 2777.CrossRefGoogle Scholar
  57. 57.
    Komeda, T., Kim, Y., Fujita, Y., Sainoo, Y., & Kawai, M. (2004). Local chemical reaction of benzene on Cu(110) via STM-induced excitation. The Journal of Chemical Physics, 120, 5347.CrossRefGoogle Scholar
  58. 58.
    Lauhon, L. J., & Ho, W. (2000). Control and characterization of a multistep unimolecular reaction. Physical Review Letters, 84, 1527.CrossRefGoogle Scholar
  59. 59.
    Corcoran, S. G., Colton, R. J., Lilleodden, E. T., & Gerberich, W. W. (1997). Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Physical Review B, 55, R16057.CrossRefGoogle Scholar
  60. 60.
    de la Fuente, O. R., Zimmerman, J. A., González, M. A., de la Figuera, J., Hamilton, J. C., Pai, W. W., & Rojo, J. M. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Physical Review Letters, 88, 036101.Google Scholar
  61. 61.
    Kondo, Y., & Takayanagi, K. (2000). Synthesis and characterization of helical multi-shell gold nanowires. Science, 289, 606.CrossRefGoogle Scholar
  62. 62.
    Tosatti, E., & Prestipino, S. (2000). Weird gold nanowires. Science, 289, 561.CrossRefGoogle Scholar
  63. 63.
    Hla, S.-W., Braun, K.-F., Iancu, V., & Deshpande, A. (2004). Single atom extraction by scanning tunneling microscope tip-crash and nanoscale surface engineering. Nano Letters, 4, 1997.CrossRefGoogle Scholar
  64. 64.
    Eigler, D. M., & Schweizer, E. K. (1990). Positioning single atoms with a scanning tunneling microscope. Nature, 344, 524.CrossRefGoogle Scholar
  65. 65.
    Bartels, L., Meyer, G., & Rieder, K.-H. (1997). Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Physical Review Letters, 79, 697.CrossRefGoogle Scholar
  66. 66.
    Lyo, I.-W., & Avouris, P. (1991). Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science, 253, 173.CrossRefGoogle Scholar
  67. 67.
    Meyer, G., Zöphel, S., & Rieder, K.-H. (1996). Manipulation of atoms and molecules with a low temperature scanning tunneling microscope. Applied Physics A: Materials Science & Processing, 63, 557.CrossRefGoogle Scholar
  68. 68.
    Tilinin, I. S., Van Hove, M. A., & Salmeron, M. (1998). Tip-surface transfer of adatoms in AFM/STM: Effect of quantum oscillations. Applied Surface Science, 676, 130–132.Google Scholar
  69. 69.
    Colton, R. J., Baker, S. M., Driscoll, R. J., Youngquist, M. G., Baldeschwieler, J. D., & Kaiser, W. J. (1988). Imaging graphite in air by scanning tunneling microscopy: Role of the tip. Journal of Vacuum Science and Technology A, 6(2), 349.CrossRefGoogle Scholar
  70. 70.
    Wong, H. S., Durkan, C., & Chandrasekhar, N. (2009). Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. ACS Nano, 3, 3455–3462.CrossRefGoogle Scholar
  71. 71.
    Stawasz, M. E., Sampson, D. L., & Parkinson, B. A. (2000). Scanning tunneling microscopy investigation of the ordered structures of dialkylamino hydroxylated squaraines adsorbed on highly oriented pyrolytic graphite. Langmuir, 16, 2326–2342.CrossRefGoogle Scholar
  72. 72.
    Paredes, J. I., Martinez-Alonso, A., & Tascon, J. M. D. (2007). Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite. Langmuir, 23, 8932–8943.CrossRefGoogle Scholar
  73. 73.
    Gopakumar, T. G., Lackinger, M., Hackert, M., Muller, F., & Hietschold, M. (2004). Adsorption of palladium phthalocyanine on graphite: STM and LEED study. The Journal of Physical Chemistry. B, 108, 7839–7843.CrossRefGoogle Scholar
  74. 74.
    Linares, M., Scifo, L., Demadrille, R., Brocorens, P., Beljonne, D., Lazzaroni, R., & Grevin, B. (2008). Two-dimensional self-assemblies of thiophene-fluorenone conjugated oligomers on graphite: A joint STM and molecular modeling study. Journal of Physical Chemistry C, 112, 6850–6859.CrossRefGoogle Scholar
  75. 75.
    Chilukuri, B., McDougald, R. N., Jr., Ghimire, M. M., Nesterov, V. N., Mazur, U., Omary, M. A., & Hipps, K. W. (2015). Polymorphic, porous, and host-guest nanostructures directed by monolayer-substrate interactions: Epitaxial self-assembly study of cyclic trinuclear Au(I) complexes on HOPG at the solution−solid interface. Journal of Physical Chemistry C, 119, 24844–24858.CrossRefGoogle Scholar
  76. 76.
    Lipari, N. O. (1987). STM applications for semiconductor materials and devices. Surface Science, 181, 285–294.CrossRefGoogle Scholar
  77. 77.
    Uosaki, K., & Koinuma, M. (1992). Application of scanning tunnelling microscopy to semiconductod electrolyte interfaces. Faraday Discussions, 94, 361–368.CrossRefGoogle Scholar
  78. 78.
    Petta, J. R. (2017). Atom-by-atom construction of a quantum device., 11, 2382–2386.Google Scholar
  79. 79.
    Volders, C., Monazami, E., Ramalingam, G., & Reinke, P. (2016). Alternative route to silicene synthesis via surface reconstruction on h-MoSi2 crystallites. Nano Letters, 17, 299–307.CrossRefGoogle Scholar
  80. 80.
    Saedi, A., Poelsema, B., & Zandvliet, H. J. W. (2010). Study of dynamic processes on semiconductor surfaces using time-resolved scanning tunneling microscopy. Journal of Physics: Condensed Matter, 22, 264007.Google Scholar
  81. 81.
    Li, Z., Li, B., Yang, J., & Hou, J. G. (2010). Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. Accounts of Chemical Research, 43, 954–962.CrossRefGoogle Scholar
  82. 82.
    Miao, P., Robinson, A. W., & Palmer, R. E. (2000). Structural properties of self-organized organo-silicon macromolecular films investigated by scanning tunneling microscopy and X-ray diffraction. The Journal of Physical Chemistry. B, 104, 1285–1291.CrossRefGoogle Scholar
  83. 83.
    Liljeroth, P., Swart, I., Paavilainen, S., Repp, J., & Meyer, G. (2010). Single-molecule synthesis and characterization of metal-ligand complexes by low-temperature STM. Nano Letters, 10, 2475–2479.CrossRefGoogle Scholar
  84. 84.
    Lin, S.-Y., Chen I-W, P., Chen, C.-H., Hsieh, M.-H., Yeh, C.-Y., Lin, T.-W., Chen, Y.-H. G., & Peng, S.-M. (2004). Effect of metal-metal interactions on electron transfer: An STM study of one-dimensional metal string complexes. The Journal of Physical Chemistry B, 108, 959–964.CrossRefGoogle Scholar
  85. 85.
    Li, J., Gottardi, S., Solianyk, L., Moreno-Lopez, J. C., & Stohr, M. (2016). 1,3,5-benzenetribenzoic acid on Cu(111) and graphene/Cu(111): A comparative STM study. Journal of Physical Chemistry C, 120, 18093–18098.CrossRefGoogle Scholar
  86. 86.
    Han, X., Hu, J., Liu, H., & Hu, Y. (2006). SEBS aggregate patterning at a surface studied by atomic force microscopy. Langmuir, 22, 3428–3433.CrossRefGoogle Scholar
  87. 87.
    Dabirian, R., Zdravkova, A. N., Liljeroth, P., van Walree, C. A., & Jenneskens, L. W. (2005). Mixed self-assembled monolayers of semirigid tetrahydro-4H-thiopyran end-capped oligo (cyclohexylidenes). Langmuir, 21, 10497–10503.CrossRefGoogle Scholar
  88. 88.
    Baubet, B., Girleanu, M., Gay, A.-S., Taleb, A.-L., Moreaud, M., Wahl, F. O., Delattre, V., Devers, E., Hugon, A., Ersen, O., Afanasiev, P., & Raybaud, P. (2016). Quantitative two-dimensional (2D) morphology−selectivity relationship of CoMoS nanolayers: A combined high-resolution high-angle annular dark field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) study. ACS Catalysis, 6, 1081–1092.CrossRefGoogle Scholar
  89. 89.
    van de Leemput, L. E. C., & Kempen, H. V. (1992). Scanning tunnelling microscopy. Report on Pmg Physics, 55, 1165–1240.CrossRefGoogle Scholar
  90. 90.
    Sumi, H. (1998). V-I characteristics of STM processes as a probe detecting vibronic interactions at a redox state in large molecular adsorbates such as electron-transfer metalloproteins. The Journal of Physical Chemistry B, 102, 1833–1844.CrossRefGoogle Scholar
  91. 91.
    Mayne, A. J., Avery, A. R., Knall, J., Jones, T. S., GAD, B., & Weinberg, W. H. (1993). An STM study of the chemisorption of C,H, on Si(OO1)(2x 1). Surface Science, 284, 247–256.CrossRefGoogle Scholar
  92. 92.
    Avow-is, P., Lyo, I.-W., & Molinas-Mata, P. (1995). STM studies of the interaction of surface state electrons on metals with steps and adsorbates. Chemical Physics Letters, 240, 423–428.CrossRefGoogle Scholar
  93. 93.
    Yang, J., Nacci, C., Martınez-Blanco, J., Kanisawa, K., & Folsch, S. (2012). Vertical manipulation of native adatoms on the InAs(111)A surface. Journal of Physics: Condensed Matter, 24, 354008.Google Scholar
  94. 94.
    Hong, S., & Rahman, T. S. (2008). Adsorbate induced changes in surface stress and phonon dispersion curves of chemisorbed systems. Journal of Physics: Condensed Matter, 20, 224005.Google Scholar
  95. 95.
    Kiejna, A., & Pabisiak, T. (2012). Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001).Google Scholar
  96. 96.
    Chen, Q., Liu, J., Zhou, X., Shang, J., Zhang, Y., Shao, X., Wang, Y., Li, J., Chen, W., Xu, G., & Wu, K. (2015). Unveiling structural evolution of CO adsorption on Ru(0001) with high-resolution STM. Journal of Physical Chemistry C, 119, 8626–8633.CrossRefGoogle Scholar
  97. 97.
    Majzik, Z., Drevniok, B., Kaminski, W., Ondracek, M., AB, M. L., & Jelınek, P. (2013). Room temperature discrimination of adsorbed molecules and attachment sites on the Si(111)-7×7 surface using a q-plus sensor. ACS Nano, 7, 2686–2692.CrossRefGoogle Scholar
  98. 98.
    Coleman, R. V., Drake, B., Giambattista, B., Johnson, A., Hansma, P. K., McNairy, W. W., & Slough, G. (1988). Applications of scanning tunneling microscopy to the study of charge density waves. Physica Scripta, 38, 235–243.CrossRefGoogle Scholar
  99. 99.
    Tcbougreefff, A. L., & Hoffmann, R. (1992). Charge and spin density waves in the electronic structure of graphlte. Application to analysis of STM images. The Journal of Physical Chemistry, 96, 8993–8998.CrossRefGoogle Scholar
  100. 100.
    Tomic, A., Rak, Z., Veazey, J. P., Mahanti, S. D., & Tessmer, S. H. (2009). Scanning tunneling microscopy study of the CeTe3 charge density wave. Physical Review B, 79, 085422.CrossRefGoogle Scholar
  101. 101.
    Sacks, W., Roditchev, D., & Klein, J. (1998). Voltage-dependent STM image of a charge density wave. Physical Review B, 57, 1920.CrossRefGoogle Scholar
  102. 102.
    Brun, C., Wang, Z.-Z., Monceau, P., & Brazovskii, S. (2010). Surface charge density wave phase transition in NbSe3. Physical Review Letters, 104, 256403.CrossRefGoogle Scholar
  103. 103.
    Fan, Q., Zhang, W. H., Liu, X., Yan, Y. J., Ren, M. Q., Xia, M., Chen, H. Y., Xu, D. F., Ye, Z. R., Jiao, W. H., & Cao, G. H. (2015). Scanning tunneling microscopy study of superconductivity, magnetic vortices, and possible charge-density wave in Ta4Pd3Te16. Physical Review B, 91, 104506.CrossRefGoogle Scholar
  104. 104.
    Fischer, O., Kugler, M., Maggio-Aprile, I., & Berthod, C. (2007). Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics, 79, 353.CrossRefGoogle Scholar
  105. 105.
    Lee, J., Slezak, J. A., & Davis, J. C. (2005). Spectroscopic imaging STM studies of high-TC superconductivity. Journal of Physics and Chemistry of Solids, 66, 1370–1375.CrossRefGoogle Scholar
  106. 106.
    Rodrigo, J. G., Suderow, H., & Vieira, S. (2004). On the use of STM superconducting tips at very low temperatures.  https://doi.org/10.1140/epjb/e2004-00273-y.CrossRefGoogle Scholar
  107. 107.
    Zou, Q., Wu, Z., Fu, M., Zhang, C., Rajput, S., Wu, Y., Li, L., Parker, D. S., Kang, J., Sefat, A. S., & Gai, Z. (2017). Effect of surface morphology and magnetic impurities on the electronic structure in cobalt-doped BaFe2As2 superconductors. Nano Letters, 17, 1642–1647.CrossRefGoogle Scholar
  108. 108.
    Wise, W. D., Chatterjee, K., Boyer, M. C., Kondo, T., Takeuchi, T., Ikuta, H., Xu, Z., Wen, J., Gu, G. D., Wang, Y., & Hudson, E. W. (2009). Imaging nanoscale Fermi surface variations in an inhomogeneous superconductor. Nature Physics, 5, 213–216 2009.CrossRefGoogle Scholar
  109. 109.
    Zeljkovic, I., & Hoffman, J. E. (2013). Interplay of chemical disorder and electronic inhomogeneity in unconventional superconductors. Physical Chemistry, 15, 13462–13478.Google Scholar
  110. 110.
    Wang, H., Lee, J., Dreyer, M., & Barker, B. I. (2009). A scanning tunneling microscopy study of a new superstructure around defects created by tip–sample interaction on 2H-NbSe2. Journal of Physics: Condensed Matter, 21, 265005.Google Scholar
  111. 111.
    Liu, N., Lyeo, H. K., Shih, C. K., Oshima, M., Mano, T., & Koguchi, N. (2002). Cross-sectional scanning tunneling microscopy study of InGaAs quantum dots on GaAs(001) grown by heterogeneous droplet epitaxy. Applied Physics Letters, 80, 4345.CrossRefGoogle Scholar
  112. 112.
    Altfeder, I., Voevodin, A. A., Check, M. H., Eichfeld, S. M., Robinson, J. A., & Balatsky, A. V. (2017). Scientific Reports, 7, 43214.CrossRefGoogle Scholar
  113. 113.
    Kim, H. W., Ko, W., Ku, J. Y., Jeon, I., Kim, D., Kwon, H., Oh, Y., Ryu, S., Kuk, Y., Hwang, S. W., & Suh, H. (2015). Nanoscale control of phonon excitations in graphene. Nature Communications, 6, 7528.CrossRefGoogle Scholar
  114. 114.
    Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., & Blügel, S. (2001). Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Physical Review Letters, n86, 4132.CrossRefGoogle Scholar
  115. 115.
    Wulfhekela, W., & Kirschner, J. (1999). Spin-polarized scanning tunneling microscopy on ferromagnets. Applied Physics Letters, 75, 1944.CrossRefGoogle Scholar
  116. 116.
    Kleiber, M., Bode, M., Ravlic, R., & Wiesendanger, R. (2000). Topology-induced spin frustrations at the Cr(001) surface studied by spin-polarized scanning tunneling spectroscopy. Physical Review Letters, 85, 4606.CrossRefGoogle Scholar
  117. 117.
    Bode, M., Getzlaff, M., & Wiesendanger, R. (1998). Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001). Physical Review Letters, 81, 4256.CrossRefGoogle Scholar
  118. 118.
    Eltschka, M., Jack, B., Assig, M., Kondrashov, O. V., Skvortsov, M. A., Etzkorn, M., Ast, C. R., & Kern, K. (2014). Probing absolute spin polarization at the nanoscale. Nano Letters, 14, 7171–7174.CrossRefGoogle Scholar
  119. 119.
    Dorig, U., Zoger, O., & Pohl, D. W. (1988). Force sensing in scanning tunnelling microscopy: Observation of adhesion forces on clean metal surfaces. Journal of Microscopy, 152, 259–267.CrossRefGoogle Scholar
  120. 120.
    Manassen, Y., Ter-Ovanesyan, E., Shachal, D., & Richter, S. (1993). Electron spin resonance-scanning tunneling microscopy experiments on thermally oxidized Si(111). Physical Review B, 48, 4887. CrossRefGoogle Scholar
  121. 121.
    Zhdan, P. A. (2002). Nanoscale surface characterization of conducting and non-conducting materials with STM and contact SFM: Some problems and solutions. Surface and Interface Analysis, 33, 879–893.CrossRefGoogle Scholar
  122. 122.
    Guckenberger, R., Kosslinger, C., Gatz, R., Breu, H., Levai, N., & Baumeister, W. (1988). A scanning tunneling microscope (STM) for biological applications: Design and performance. Ultramicroscopy, 25, 111–122.CrossRefGoogle Scholar
  123. 123.
    Wilson, R. J., Johnson, K. E., Chambliss, D. D., & Melior, B. (1993). Scanning tunneling microscopy of biological molecules on Pt(ll1): From 100 to 5 × l06 Da. Langmuir, 9, 3478–3490.CrossRefGoogle Scholar
  124. 124.
    Tao, N. J., & Shi, Z. (1994). Monolayer guanine and adenine on graphite in NaCl solution: A comparative STM and AFM study. The Journal of Physical Chemistry, 98, 1464–1471.CrossRefGoogle Scholar
  125. 125.
    Smerieri, M., Vattuone, L., Costa, D., Tielens, F., & Savio, L. (2010). Self-assembly of (S)-glutamic acid on Ag(100): A combined LT-STM and Ab initio investigation. Langmuir, 26(10), 7208–7215.CrossRefGoogle Scholar
  126. 126.
    Tao, N. J., Li, C. Z., & He, H. X. (2000). Scanning tunneling microscopy applications in electrochemistry -beyond imaging. Journal of Electroanalytical Chemistry, 492, 81–93.CrossRefGoogle Scholar
  127. 127.
    Lay, M. D., Sorenson, T. A., & Stickney, J. L. (2003). High-resolution electrochemical scanning tunneling microscopy (EC-STM) flow-cell studies. The Journal of Physical Chemistry B, 107, 10598–10602.CrossRefGoogle Scholar
  128. 128.
    Kuo, Y., Liao, W., & Yau, S. L. (2014). Effects of anions on the electrodeposition of cobalt on Pt(111) electrode. Langmuir, 30, 13890–13897.CrossRefGoogle Scholar
  129. 129.
    Yang, Y.-C., Lee, Y.-L., Ou Yang, L.-Y., & Yau, S.-L. (2006). In situ scanning tunneling microscopy of 1,6-hexanedithiol, 1,9-nonanedithiol, 1,2-benzenedithiol, and 1,3-benzenedithiol adsorbed on Pt(111) electrodes. Langmuir, 22, 5189–5195.CrossRefGoogle Scholar
  130. 130.
    Grubb, M., Wackerbarth, H., Jesper, W., & Jens, U. (2007). Direct imaging of Hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA. Langmuir, 23, 1410–1413.CrossRefGoogle Scholar
  131. 131.
    Bhusan, B., Israelachvili, J. N., & Lndman, U. (1995). Nanotribiology: Friction, wear and lubrication at the atomic scale. Nature, 374, 607.CrossRefGoogle Scholar
  132. 132.
    Ding, Y. H., Ren, H.-M., Chang, F.-H., Zhang, P., & Jiang, Y. (2013). Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy. Bulletin of Materials Science, 36, 1073–1077.CrossRefGoogle Scholar
  133. 133.
    Jaklevic, R. C., & Elie, L. (1998). Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111). Physical Review Letters, 60, 120.CrossRefGoogle Scholar
  134. 134.
    Packard, W. E., Liang, Y., Dai, N., Dow, J. D., Nicolides, R., Jaklevic, R. C., & Kaise, W. J. (1988). Nano-machining of gold and semiconductor surfaces. Joumal of Microscopy, 152, 715–725.CrossRefGoogle Scholar
  135. 135.
    Williams, P. M., Cheema, M. S., Davies, M. C., Jackson, D. E., & Tendler, S. J. B. (1994). Biological applications of scanning tunneling microscopy. In C. Jones, B. Mulloy, & A. H. Thomas (Eds.), Microscopy, optical spectroscopy, and macroscopic techniques (pp. 25–37). Totowa: Humana Press.Google Scholar
  136. 136.
    Stegemann, B., Bernhardt, T. M., Kaiser, B., & Rademann, K. (2002). STM investigation of surface alloy formation and thin film growth by Sb4 deposition on Au (111). Surface Science, 511, 153–162.CrossRefGoogle Scholar
  137. 137.
    Biegelsen, D. K., Bringans, R. D., Northrup, J. E., & Swartz, L.-E. (1990). Reconstructions of GaAs(111) surfaces observed by scanning tunneling microscopy. Physical Review Letters, 65.CrossRefGoogle Scholar
  138. 138.
    Xu, P., Barber, S. D., Ackerman, M. L., Schoelz, J. K., & Thibado, P. M. (2013). Role of bias voltage and tunneling current in the perpendicular displacements of freestanding graphene via scanning tunneling microscopy. Journal of Vacuum Science and Technology B, 31, 04D103.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Suryakanti Debata
    • 1
  • Trupti R. Das
    • 1
  • Rashmi Madhuri
    • 2
  • Prashant K. Sharma
    • 1
    Email author
  1. 1.Functional Nanomaterials Research Laboratory, Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations