Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization

  • Kalsoom Akhtar
  • Shahid Ali Khan
  • Sher Bahadar KhanEmail author
  • Abdullah M. Asiri


Scanning electron microscopy (SEM) is an important electron microscopy technique that is capable of achieving a detailed visual image of a particle with high-quality and spatial resolution. SEM is a multipurpose state-of-the-art instrument which is largely employed to observe the surface phenomena of the materials. The sample is exposed in SEM to the high-energy electron beam and gives information about topography, morphology, composition, chemistry, orientation of grains, crystallographic information, etc. of a material, and therefore SEM is a useful tool to be used for the characterization of materials. Morphology indicates the shape and size, while topography indicates the surface features of an object or “how it looks”, its texture, smoothness or roughness. Likewise, composition means elements and compounds that constitute the material, while crystallography means the arrangement of atoms in the materials. This chapter is focused on discussing briefly the SEM technique, its utilization, principle, advancement, operation, samples preparation and applications in materials science. We will explain what does SEM mean, what can be done with a SEM, how it functions and what are the different parts of the SEM.


FESEM Principal Instrumentation Characterization Nanomaterials 



The authors are grateful to the Department of Chemistry and the Center of Excellence for Advanced Materials Research (CEAMR) at King Abdulaziz University for providing research facilities.


  1. 1.
    Alyamani, A., & Lemine, O. M. (2012). FE-SEM characterization of some nanomaterial. In V. Kazmiruk (Ed.), Scanning electron microscopy. InTech. LondonGoogle Scholar
  2. 2.
    McMahon, G. (2007). Analytical instrumentation: A guide to laboratory, portable and miniaturized instruments (1st ed.p. 296). Chichester: Wiley.CrossRefGoogle Scholar
  3. 3.
    Goldstein, J. K., & Yakowitz, H. (1975). Practical scanning electron microscopy: Electron and ion microprobe analysis (p. 582). New York: Plenum Press.CrossRefGoogle Scholar
  4. 4.
    Goldstein, J. I., Newbury, D. E., Echlin, P., & Joy, D. C. (1992). Scanning electron microscopy and x-ray microanalysis (2nd ed.). New York: Plenum Press.CrossRefGoogle Scholar
  5. 5.
    Brabazon, D., & Raffer, A. (2010). 3 – advanced characterization techniques for nanostructures. In W. Ahmed & M. J. Jackson (Eds.), Emerging nanotechnologies for manufacturing (pp. 59–91). Boston: William Andrew Publishing.CrossRefGoogle Scholar
  6. 6.
    McMahon. (2007, November 11). Imaging instruments. Analytical Instrumentation.Google Scholar
  7. 7.
    Ram, S., Ward, E. S., & Ober, R. J. (2006). Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. PNAS, 103(12), 4457–4462.CrossRefGoogle Scholar
  8. 8.
    Bondeson, D. (2007). Biopolymer-based nanocomposites: Processing and properties. In Department of engineering design and materials (p. 114). Trondheim: Norwegian University of Science and Technology.Google Scholar
  9. 9.
    Zhou, W., Apkarian, R. P., Wang, Z. L., & Joy, D. (2006). Fundamentals of scanning electron microscopy. In Scanning microscopy for nanotechnology (pp. 1–40). New York: Springer.Google Scholar
  10. 10.
    Hayes, T. L., & Pease, R. F. W. (1968). The scanning electron microscope: Principles and applications in biology and medicine. Advances in biological and medical physics, 12, 85–137.Google Scholar
  11. 11.
    Sant’Anna, C., Campanati, L., Gadelha, C., Lourenco, D., Labati-Terra, L., Bittencourt-Silvestre, J., Benchimol, M., Cunha-e-Silva, N. L., & De Souza, W. (2005). Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM). Histochemistry and Cell Biology, 124(1), 87–95.CrossRefGoogle Scholar
  12. 12.
    Lloyd, G. E. (1987). Atomic number and crystallographic contrast images with the SEM: A review of backscattered electron techniques. Mineralogical Magazine, 51(359), 3–19.CrossRefGoogle Scholar
  13. 13.
    Rahman, M. M., Jamal, A., Khan, S. B., & Faisal, M. (2011). CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS Applied Materials & Interfaces, 3, 1346–1351.CrossRefGoogle Scholar
  14. 14.
    Khan, S. A., Khan, S. B., Asiri, A. M., & Ahmad, I. (2016). Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Research Letters, 11, 345–353.CrossRefGoogle Scholar
  15. 15.
    Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 27, 5294–5302.Google Scholar
  16. 16.
    Khan, S. B., Khan, S. A., & Asiri, A. M. (2016). A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Applied Surface Science, 370, 445–451.CrossRefGoogle Scholar
  17. 17.
    Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Advances, 6, 83196–83208.CrossRefGoogle Scholar
  18. 18.
    Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Layered double hydroxide of Cd-Al/C for the mineralization and de-coloration of dyes in solar and visible light exposure. Scientific Reports, 6, 35107.CrossRefGoogle Scholar
  19. 19.
    Jamal, A., Rahman, M. M., Khan, S. B., Faisal, M., Akhtar, K., Abdul Rub, M., Asiri, A. M., & Al-Youbi, A. O. (2012). Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Applied Surface Science, 261, 52–58.CrossRefGoogle Scholar
  20. 20.
    Faisal, M., Khan, S. B., Rahman, M. M., Jamal, A., & Abdullah, M. M. (2012). Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst. Applied Surface Science, 258, 7515–7522.CrossRefGoogle Scholar
  21. 21.
    Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M., & Alamry, K. A. (2012). Selective iron (III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry. Chemistry Central Journal, 6, 158.CrossRefGoogle Scholar
  22. 22.
    Rahman, M. M., Khan, S. B., Asiri, A. M., & Al-Sehemi, A. G. (2013). Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochimica Acta, 112, 422–430.CrossRefGoogle Scholar
  23. 23.
    Qian, X., Xiong, D., Asiri, A. M., Khan, S. B., Rahman, M. M., Xu, H., & Zhao, D. (2013). A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. Journal of Materials Chemistry A, 1, 7525–7532.CrossRefGoogle Scholar
  24. 24.
    Seo, J., Jeon, G., Jang, E. S., Khan, S. B., & Han, H. (2011). Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science, 122, 1101–1108.CrossRefGoogle Scholar
  25. 25.
    Kim, D., Lee, Y., Seo, J., Han, H., & Khan, S. B. (2013). Preparation and properties of poly(urethane acrylate) (PUA) and tetrapod ZnO whisker (TZnO-W) composite films. Polymer International, 62, 257–265.CrossRefGoogle Scholar
  26. 26.
    Khan, S. A., Khan, S. B., Kamal, T., Yasir, M., & Asiri, A. M. (2016). Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. International Journal of Biological Macromolecules, 91, 744–751.CrossRefGoogle Scholar
  27. 27.
    Ahmed, M. S., Kamal, T., Khan, S. A., Anwar, Y., Saeed, M. T., Asiri, A. M., & Khan, S. B. (2016). Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Current Nanoscience, 12, 569–575.CrossRefGoogle Scholar
  28. 28.
    Khan, S. B., Khan, S. A., Marwani, H. M., Bakhsh, E. M., Anwar, Y., Kamal, T., Asiri, A. M., & Akhtar, K. (2016). Anti-bacterial PES-cellulose composite spheres: Dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances, 6, 110077–110090.CrossRefGoogle Scholar
  29. 29.
    Gul, S., Rehan, Z. A., Khan, S. A., Akhtar, K., Khan, M. A., Khan, M. I., Rashid, M. I., Asiri, A. M., & Khan, S. B. (2017). Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. Journal of Molecular Liquids, 230, 616–624.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kalsoom Akhtar
    • 1
  • Shahid Ali Khan
    • 2
    • 3
  • Sher Bahadar Khan
    • 3
    • 4
    Email author
  • Abdullah M. Asiri
    • 3
    • 4
  1. 1.Division of Nano Sciences and Department of ChemistryEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of ChemistryUniversity of SwabiKhyber PakhtunkhwaPakistan
  3. 3.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations