Dynamic Light Scattering: Effective Sizing Technique for Characterization of Magnetic Nanoparticles

  • Sim Siong Leong
  • Wei Ming Ng
  • JitKang Lim
  • Swee Pin YeapEmail author


In pace with the advancement in nanoparticle-based researches, dynamic light scattering (DLS) has been widely employed as an essential technique for particle sizing. This trend is mainly due to the ease of operation feature of the modern DLS equipment and its ability to provide statistically representative sizing information for nanomaterials. Despite overwhelming use of DLS in nanoparticle-related research and its regular presence in recent literature, the common question raised among the DLS users is how to carry out proper analysis and interpretation of the data obtained. For instance, there is inconsistency in the types of size distributions (i.e., intensity-weighted distribution, volume-weighted distribution, and number-weighted distribution) reported in current published accounts. In fact, reporting an improper size distribution could lead to misleading research outcome. Thus, understanding the fundamental concept and working principle of DLS is needed for effective and correct utilization of this sizing approach. More importantly, extra care should be taken to interpret the DLS data for particles that tend to aggregate such as the magnetic nanoparticles (MNPs). In this regard, this chapter is dedicated to provide an overview on the working principle of DLS and correlation between different types of size distributions, as well as to discuss the practical usages of DLS in characterization of MNPs for engineering and colloid science studies. This chapter also presented the comparison between DLS and electron microscopy for their size measurement capability, as well as the effect of particle concentration and occurrence of differential sedimentation during DLS measurement on the sizing outcome.


Dynamic light scattering (DLS) Size distribution Magnetic nanoparticles Particle size Sizing outcomes 


  1. 1.
    Gong, W., Li, H., Zhao, Z., & Chen, J. (1991). Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. Journal of Applied Physics, 69, 5119–5121.CrossRefGoogle Scholar
  2. 2.
    Kolhatkar, A. G., Jamison, A. C., Litvinov, D., Willson, R. C., & Lee, T. R. (2013). Tuning the magnetic properties of nanoparticles. International Journal of Molecular Sciences, 14, 15977–16009.CrossRefGoogle Scholar
  3. 3.
    Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., & Zou, G. (2006). The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Materials Letters, 60, 3548–3552.CrossRefGoogle Scholar
  4. 4.
    Mody Vicky, V., Singh, A., & Wesley, B. (2013). Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 5, 11–21.Google Scholar
  5. 5.
    Yeap, S. P., Leong, S. S., Ahmad, A. L., Ooi, B. S., & Lim, J. (2014). On size fractionation of iron oxide nanoclusters by low magnetic field gradient. The Journal of Physical Chemistry C, 118, 24042–24054.CrossRefGoogle Scholar
  6. 6.
    Alexander, M., & Dalgleish, D. G. (2006). Dynamic light scattering techniques and their applications in food science. Food Biophysics, 1, 2–13.CrossRefGoogle Scholar
  7. 7.
    Malvern Instruments. (2013). Zetasizer nano user manual: MAN0485 Issue 1.1.Google Scholar
  8. 8.
    Lim, J. K., Majetich, S. A., & Tilton, R. D. (2009). Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir, 25, 13384–13393.CrossRefGoogle Scholar
  9. 9.
    Saville, S. L., Woodward, R. C., House, M. J., Tokarev, A., Hammers, J., Qi, B., Shaw, J., Saunders, M., Varsani, R. R., St Pierre, T. G., et al. (2013). The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nanoscale, 5, 2152–2163.CrossRefGoogle Scholar
  10. 10.
    Majeed, M. I., Lu, Q., Yan, W., Li, Z., Hussain, I., Tahir, M. N., Tremel, W., & Tan, B. (2013). Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: Enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. Journal of Materials Chemistry B, 1, 2874–2884.CrossRefGoogle Scholar
  11. 11.
    Huang, X., Bronstein, L. M., Retrum, J., Dufort, C., Tsvetkova, I., Aniagyei, S., Stein, B., Stucky, G., McKenna, B., Remmes, N., et al. (2007). Self-assembled virus-like particles with magnetic cores. Nano Letters, 7, 2407–2416.CrossRefGoogle Scholar
  12. 12.
    Toh, P. Y., Ng, B. W., Ahmad, A. L., Chieh, D. C. J., & Lim, J. (2014). Magnetophoretic separation of Chlorella sp.: Role of cationic polymer binder. Process Safety and Environmental Protection, 92, 515–521.CrossRefGoogle Scholar
  13. 13.
    Kleine, A., Altan, C. L., Yarar, U. E., Sommerdijk, N. A. J. M., Bucak, S., & Holder, S. J. (2014). The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: A stabiliser for the synthesis and dispersion of magnetite nanoparticles. Polymer Chemistry, 5, 524–534.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Goldburg, W. (1999). Dynamic light scattering. American Journal of Physics, 67, 1152–1160.CrossRefGoogle Scholar
  16. 16.
    Van de Hulst, H. C. (2012). Light scattering by small particles. New York: Dover Publications.Google Scholar
  17. 17.
    Koppel, D. E. (1972). Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. The Journal of Chemical Physics, 57, 4814–4820.CrossRefGoogle Scholar
  18. 18.
    Pecora, R. (2013). Dynamic light scattering: Applications of photon correlation spectroscopy. New York: Plenum PressGoogle Scholar
  19. 19.
    Min, G. K., Bevan, M. A., Prieve, D. C., & Patterson, G. D. (2002). Light scattering characterization of polystyrene latex with and without adsorbed polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202, 9–21.CrossRefGoogle Scholar
  20. 20.
    Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: With applications to chemistry, biology, and physics. New York: Dover Publications.Google Scholar
  21. 21.
    Lim, J., Yeap, S. P., Che, H. X., & Low, S. C. (2013). Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 8, 381.CrossRefGoogle Scholar
  22. 22.
    Yu, G., Durduran, T., Zhou, C., Cheng, R., & Yodh, A. G. (2011). Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow. In D. A. Boas, C. Pitris, & N. Ramanujam (Eds.), Handbook of biomedical optics (pp. 195–216). Boca Raton: CRC Press.CrossRefGoogle Scholar
  23. 23.
    Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena. New York: Wiley.Google Scholar
  24. 24.
    Ingle, J. D. J., & Crouch, S. R. (1988). Spectrochemical analysis. Old Tappan: Prentice Hall College Book Division None.Google Scholar
  25. 25.
    Hiemenz, P. C., & Rajagopalan, R. (1997). Principles of colloid and surface chemistry, Third Edition, Revised and Expanded. New York: Marcel Dekker, Inc.Google Scholar
  26. 26.
    Chu, B. (1974). Laser light scattering. New York: Elsevier Science.Google Scholar
  27. 27.
    Xu, R., Winnik, M. A., Hallett, F. R., Riess, G., & Croucher, M. D. (1991). Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution. Macromolecules, 24, 87–93.CrossRefGoogle Scholar
  28. 28.
    Nobbmann, U. (2014). Polydispersity – what does it mean for DLS and chromatography? [Online]. Available:
  29. 29.
    Nobbmann, U., & Morfesis, A. (2009). Light scattering and nanoparticles. Materials Today, 12, 52–54.CrossRefGoogle Scholar
  30. 30.
    Malvern Instruments Ltd. (2009). Intensity-volume-number which size is correct? Malvern Technical Notes.Google Scholar
  31. 31.
    Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscalezerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.CrossRefGoogle Scholar
  32. 32.
    Ditsch, A., Laibinis, P. E., Wang, D. I. C., & Hatton, A. (2005). Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles. Langmuir, 21, 6006–6018.CrossRefGoogle Scholar
  33. 33.
    Zhu, A., Yuan, L., & Dai, S. (2008). Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. The Journal of Physical Chemistry C, 112, 5432–5438. Scholar
  34. 34.
    Tang, S. C. N., & Lo, I. M. C. (2013). Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research, 47, 2613–2632.CrossRefGoogle Scholar
  35. 35.
    Mahdavian, A. R., & Mirrahimi, M. A.-S. (2010). Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal, 159, 264–271.CrossRefGoogle Scholar
  36. 36.
    Madrakian, T., Afkhami, A., Zadpour, B., & Ahmadi, M. (2015). New synthetic mercaptoethylaminohomopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. Journal of Industrial and Engineering Chemistry, 21, 1160–1166.CrossRefGoogle Scholar
  37. 37.
    Chen, Y., Xianyu, Y., Wang, Y., Zhang, X., Cha, R., Sun, J., & Jiang, X. (2015). One-step detection of pathogens and viruses: Combining magnetic relaxation switching and magnetic separation. ACS Nano, 9, 3184–3191.CrossRefGoogle Scholar
  38. 38.
    Oberdisse, J. (2007). Adsorption and grafting on colloidal interfaces studied by scattering techniques. Current Opinion in Colloid & Interface Science, 12, 3–8.CrossRefGoogle Scholar
  39. 39.
    Van der Beek, G. P., & Cohen Stuart, M. A. (1988). The hydrodynamic thickness of adsorbed polymer layers measured by dynamic light scattering: Effects of polymer concentration and segmental binding strength. Journal of Physics France, 49, 1449–1454.CrossRefGoogle Scholar
  40. 40.
    Rümenapp, C., Gleich, B., Mannherz, H. G., & Haase, A. (2015). Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 380, 271–275.CrossRefGoogle Scholar
  41. 41.
    Stone, R. C., Qi, B., Trebatoski, D., Jetti, R., Bandera, Y. P., Foulger, S. H., & Mefford, O. T. (2014). A versatile stable platform for multifunctional applications: Synthesis of a nitroDOPA-PEO-alkyne scaffold for iron oxide nanoparticles. Journal of Materials Chemistry B, 2, 4789–4793.CrossRefGoogle Scholar
  42. 42.
    Roveimiab, Z., Mahdavian, A. R., Biazar, E., & Heidari, K. S. (2012). Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. Journal of Colloid Science and Biotechnology, 1, 82–88.CrossRefGoogle Scholar
  43. 43.
    Nguyen, T.-K., Duong, H. T. T., Selvanayagam, R., Boyer, C., & Barraud, N. (2015). Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Scientific Reports, 5, 18385.CrossRefGoogle Scholar
  44. 44.
    Chai, C. C., Lee, Z. H., Toh, P. Y., Chieh, D. C. J., Ahmad, A. L., & Lim, J. K. (2015). Effects of dissolved organic matter and suspended solids on the magnetophoretic separation of microalgal cells from an aqueous environment. Chemical Engineering Journal, 281, 523–530.CrossRefGoogle Scholar
  45. 45.
    Yeap, S. P., Ahmad, A. L., Ooi, B. S., & Lim, J. K. (2012). Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir, 28, 14878–14891.CrossRefGoogle Scholar
  46. 46.
    Choi, Y.-W., Lee, H., Song, Y., & Sohn, D. (2015). Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants. Journal of Colloid and Interface Science, 443, 8–12.CrossRefGoogle Scholar
  47. 47.
    Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.CrossRefGoogle Scholar
  48. 48.
    Basnet, M., Ghoshal, S., & Tufenkji, N. (2013). Rhamnolipidbiosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environmental Science & Technology, 47, 13355–13364.CrossRefGoogle Scholar
  49. 49.
    Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  50. 50.
    Golas, P. L., Louie, S., Lowry, G. V., Matyjaszewski, K., & Tilton, R. D. (2010). Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir, 26, 16890–16900.CrossRefGoogle Scholar
  51. 51.
    Hu, J.-D., Zevi, Y., Kou, X.-M., Xiao, J., Wang, X.-J., & Jin, Y. (2010). Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Science of the Total Environment, 408, 3477–3489.CrossRefGoogle Scholar
  52. 52.
    Yildiz, I., & SiziriciYildiz, B. (2015). Applications of thermoresponsive magnetic nanoparticles. Journal of Nanomaterials, 2015, 12.CrossRefGoogle Scholar
  53. 53.
    Zhao, Q., Chen, N., Zhao, D., & Lu, X. (2013). Thermoresponsive magnetic nanoparticles for seawater desalination. ACS Applied Materials & Interfaces, 5, 11453–11461.CrossRefGoogle Scholar
  54. 54.
    Cortez-Lemus, N. A., & Licea-Claverie, A. (2016). Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Progress in Polymer Science, 53, 1–51.CrossRefGoogle Scholar
  55. 55.
    Soeriyadi, A. H., Li, G.-Z., Slavin, S., Jones, M. W., Amos, C. M., Becer, C. R., Whittaker, M. R., Haddleton, D. M., Boyer, C., & Davis, T. P. (2011). Synthesis and modification of thermoresponsive poly(oligo(ethylene glycol) methacrylate) via catalytic chain transfer polymerization and thiol-ene Michael addition. Polymer Chemistry, 2, 815–822.CrossRefGoogle Scholar
  56. 56.
    Lutz, J.-F. (2008). Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 46, 3459–3470.CrossRefGoogle Scholar
  57. 57.
    Wang, X., Qiu, X., & Wu, C. (1998). Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules, 31, 2972–2976.CrossRefGoogle Scholar
  58. 58.
    Dong, H., & Matyjaszewski, K. (2010). Thermally responsive P(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules, 43, 4623–4628.CrossRefGoogle Scholar
  59. 59.
    Hoshino, A., Ohnishi, N., Yasuhara, M., Yamamoto, K., & Kondo, A. (2007). Separation of murine neutrophils and macrophages by thermoresponsive magnetic nanoparticles. Biotechnology Progress, 23, 1513–1516.CrossRefGoogle Scholar
  60. 60.
    Vysotskii, V. V., Uryupina, O. Y., Gusel’nikova, A. V., & Roldugin, V. I. (2009). On the feasibility of determining nanoparticle concentration by the dynamic light scattering method. Colloid Journal, 71, 739.CrossRefGoogle Scholar
  61. 61.
    Smeraldi, J., Ganesh, R., Safarik, J., & Rosso, D. (2012). Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters. Journal of Environmental Monitoring, 14, 79–84.CrossRefGoogle Scholar
  62. 62.
    Makra, I., Terejánszky, P., & Gyurcsányi, R. E. (2015). A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX, 2, 91–99.CrossRefGoogle Scholar
  63. 63.
    Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J., Chen, H., & Huo, Q. (2008). A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. Journal of the American Chemical Society, 130, 2780–2782.CrossRefGoogle Scholar
  64. 64.
    Shang, J., & Gao, X. (2014). Nanoparticle counting: Towards accurate determination of the molar concentration. Chemical Society Reviews, 43, 7267–7278.CrossRefGoogle Scholar
  65. 65.
    de Kanter, M., Meyer-Kirschner, J., Viell, J., Mitsos, A., Kather, M., Pich, A., & Janzen, C. (2016). Enabling the measurement of particle sizes in stirred colloidal suspensions by embedding dynamic light scattering into an automated probe head. Measurement, 80, 92–98.CrossRefGoogle Scholar
  66. 66.
  67. 67.
    Kikuchi, J.-I., & Yasuhara, K. (2012). Transmission electron microscopy (TEM). In Supramolecular chemistry. Chichester: WileyGoogle Scholar
  68. 68.
    Egerton, R. F. (2005). Physical principles of electron microscopy: An introduction to TEM, SEM, and AEM. New York: Springer Science & Business Media.CrossRefGoogle Scholar
  69. 69.
    de Jonge, N., & Ross, F. M. (2011). Electron microscopy specimens in liquid. Nature Nanotechnology, 6, 695–704.CrossRefGoogle Scholar
  70. 70.
    Vernon-Parry, K. D. (2000). Scanning electron microscopy: An introduction. III-Vs Review, 13, 40–44.CrossRefGoogle Scholar
  71. 71.
    Ito, T., Sun, L., Bevan, M. A., & Crooks, R. M. (2004). Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir, 20, 6940–6945.CrossRefGoogle Scholar
  72. 72.
    Alwan, R. M., Kadhim, Q. A., Sahan, K. M., Ali, R. A., Mahdi, R. J., Kassim, N. A., & Jassim, A. N. (2015). Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanoscience and Nanotechnology, 5, 1–6.Google Scholar
  73. 73.
    Vijayakumar, M., Priya, K., Nancy, F. T., Noorlidah, A., & Ahmed, A. B. A. (2013). Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products, 41, 235–240.CrossRefGoogle Scholar
  74. 74.
    Fissan, H., Ristig, S., Kaminski, H., Asbach, C., & Epple, M. (2014). Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Analytical Methods, 6, 7324–7334.CrossRefGoogle Scholar
  75. 75.
    Stadtländer, C. (2007). Scanning electron microscopy and transmission electron microscopy of mollicutes: Challenges and opportunities. Modern Research and Educational Topics in Microscopy, 1, 122–131.Google Scholar
  76. 76.
    Hall, J. B., Dobrovolskaia, M. A., Patri, A. K., & McNeil, S. E. (2007). Characterization of nanoparticles for therapeutics. Nanomedicine, 2, 789–803.CrossRefGoogle Scholar
  77. 77.
    Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389, 827–829.CrossRefGoogle Scholar
  78. 78.
    Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., & Petri-Fink, A. (2015). Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Scientific Reports, 5, 9793.CrossRefGoogle Scholar
  79. 79.
    Kadar, E., Batalha, Í. L., Fisher, A., & Roque, A. C. A. (2014). The interaction of polymer-coated magnetic nanoparticles with seawater. Science of the Total Environment, 487, 771–777.CrossRefGoogle Scholar
  80. 80.
    Ghosh, S., Jiang, W., McClements, J. D., & Xing, B. (2011). Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 27, 8036–8043.CrossRefGoogle Scholar
  81. 81.
    Liu, X. L., Choo, E. S. G., Ahmed, A. S., Zhao, L. Y., Yang, Y., Ramanujan, R. V., Xue, J. M., Fan, D. D., Fan, H. M., & Ding, J. (2014). Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. Journal of Materials Chemistry B, 2, 120–128.CrossRefGoogle Scholar
  82. 82.
    Shanmuga, S., Singhal, M., & Sen, S. (2015). Synthesis and characterization of carrageenan coated Ma. Translational Biomedicine, 6.Google Scholar
  83. 83.
    Michler, G. H. (2008). Electron microscopy of polymers. Heidelberg: Springer.Google Scholar
  84. 84.
    Yu, W. W., Chang, E., Falkner, J. C., Zhang, J., Al-Somali, A. M., Sayes, C. M., Johns, J., Drezek, R., & Colvin, V. L. (2007). Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. Journal of the American Chemical Society, 129, 2871–2879.CrossRefGoogle Scholar
  85. 85.
    Lee, S., Kim, K., Shon, H. K., Kim, S. D., & Cho, J. (2011). Biotoxicity of nanoparticles: Effect of natural organic matter. Journal of Nanoparticle Research, 13, 3051–3061.CrossRefGoogle Scholar
  86. 86.
    Bootz, A., Vogel, V., Schubert, D., & Kreuter, J. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 57, 369–375.CrossRefGoogle Scholar
  87. 87.
    Lu, R. (2016). Light scattering technology for food property, quality and safety assessment. Boca Raton: CRC Press.CrossRefGoogle Scholar
  88. 88.
    Henry, C., Minier, J.-P., Pozorski, J., & Lefèvre, G. (2013). A new stochastic approach for the simulation of agglomeration between colloidal particles. Langmuir, 29, 13694–13707.CrossRefGoogle Scholar
  89. 89.
    Yeap, S. P., Toh, P. Y., Ahmad, A. L., Low, S. C., Majetich, S. A., & Lim, J. (2012). Colloidal stability and magnetophoresis of gold-coated iron oxide nanorods in biological media. Journal of Physical Chemistry C, 116, 22561–22569.CrossRefGoogle Scholar
  90. 90.
    Hassan, P. A., Rana, S., & Verma, G. (2015). Making sense of Brownian motion: Colloid characterization by dynamic light scattering. Langmuir, 31(1), 3–12.CrossRefGoogle Scholar
  91. 91.
    Yeap, S. P., Ahmad, A. L., Ooi, B. S., & Lim, J. (2015). Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior. Journal of Nanoparticle Research, 17, 1–22.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sim Siong Leong
    • 1
    • 2
  • Wei Ming Ng
    • 1
  • JitKang Lim
    • 1
    • 3
  • Swee Pin Yeap
    • 4
    Email author
  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Faculty of Engineering and Built EnvironmentSEGi UniversitySelangorMalaysia
  3. 3.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built EnvironmentUCSI UniversityKuala LumpurMalaysia

Personalised recommendations