Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems

  • Oscar Moscoso LondoñoEmail author
  • Pablo Tancredi
  • Patricia Rivas
  • Diego Muraca
  • Leandro M. Socolovsky
  • Marcelo Knobel


Small-angle X-ray scattering (SAXS) is a powerful technique that uses the scattering of a beam of X-rays to investigate the structure, morphology, and arrangement of submicron dimensions and particularly useful for studying systems at the nanometric scale. Herein, in this chapter book, we will examine the most representative features of several scattering intensity curves acquired from several nanoparticulated systems. We begin with the explanation of the most fundamental concepts behind the SAXS framework, to then introduce the principal features of a scattering pattern. Each section of this chapter is complemented with practical examples, many of which are simulations, while others come from real experimental data taken from real samples synthesized for this purpose in our labs. As an important part of this work, we present two models often used to fit SAXS curves acquired from granular nanoparticle samples, which are the fractal aggregate and the Beaucage models. In this last part of these sections, our goal is to explain how to obtain valuable structural information from systems consisting of either nanoparticles surrounded by liquids or solids. Finally, we present a complete description of the principal components needed to a SAXS instrument.



O. M. L., D. M., and M. K. acknowledge FAPESP, Brazil (2014/26672-8, 2011/01235-6 and 2011/02356-11), P. T., P. R., and L. M. S. Thanks to CONICET (Argentina). LNLS/CNPEM is acknowledged for SAXS measurements. LNNano/CNPEM is acknowledged for the use of TEM microscopes. All the authors want to especially thank the developers of the SASfit software, which was used to simulate the SAXS curves presented here.


  1. 1.
    Feigin, L. A., & Svergun, D. I. (1989). Structure analysis by small-angle X-ray and neutron scattering. New York: Plenum Press.Google Scholar
  2. 2.
    Schnablegger, H., & Singh, Y. (2013). The SAXS guide. Austria: Anton Paar GmbH.Google Scholar
  3. 3.
    Li, T., Senesi, A. J., & Lee, B. (2016). Small angle A-ray scattering for nanoparticle research. Chemical Reviews, 116(18), 11128–11180.CrossRefGoogle Scholar
  4. 4.
    Thiele, E. (1963). Equation of state for hard spheres. The Journal of Chemical Physics, 39(2), 474–479.CrossRefGoogle Scholar
  5. 5.
    Glatter, O., & Kratky, O. (1982). Small-angle X-ray scattering. London: Academic.Google Scholar
  6. 6.
    Craievich, A. F. (2016). Small-angle X-ray scattering by nanostructured materials. In L. Klein, M. Aparicio, & A. Jitianu (Eds.), Handbook of sol-gel science and technology. Cham: Springer.Google Scholar
  7. 7.
    Debye, P., & Bueche, A. M. (1949). Scattering by an inhomogeneous solid. Journal of Applied Physics, 20, 51525.CrossRefGoogle Scholar
  8. 8.
    Putnam, C. D., Hammel, M., Hura, G. L., & Tainer, J. A. (2007). X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics, 40(3), 191–285.CrossRefGoogle Scholar
  9. 9.
    Hammouda, B. (2008). Probing nanoscale structures – the SANS toolbox. Maryland: Gaithersburg.Google Scholar
  10. 10.
    Glatter, O. (1977). A new method for the evaluation of small angle scattering data. Journal of Applied Crystallography, 10, 415–421.CrossRefGoogle Scholar
  11. 11.
    Amemiya, Y., & Shinohara, Y. Oral presentation at Cheiron School 2011: Small-angle X-ray scattering basics & applications. Japan: Graduate School of Frontier Sciences, The University of Tokyo.Google Scholar
  12. 12.
    Sanjeeva Murthy, N. (2016). X-ray diffractions from polymers. In Q. Guo (Ed.), Polymer morphology: Principles, characterization and processing (pp. 29–31). Hoboken: Wiley.Google Scholar
  13. 13.
    Guinier, A., & Fournet, G. (1955). Small-angle scattering of X-rays. New York: Wiley.Google Scholar
  14. 14.
    Porod, G. (1982). Chapter 2: General theory. In O. Glatter & O. Kratky (Eds.), Small-angle X-ray scattering. London: Academic.Google Scholar
  15. 15.
    Roe, R.-J. (2000). Methods of X-ray and neutron scattering in polymer science. Oxford: Oxford University Press.Google Scholar
  16. 16.
    Hammouda, B. (2010). Analysis of the Beaucage model. Journal of Applied Crystallography, 43, 1474–1478.CrossRefGoogle Scholar
  17. 17.
    Rivas Rojas, P. C., Tancredi, P., Moscoso Londoño, O., Knobel, M., & Socolovsky, L. M. (2018). Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 451, 688–696.CrossRefGoogle Scholar
  18. 18.
    Tancredi, P., Rivas Rojas, P. C., Moscoso-Londoño, O., Wolff, U., Neu, V., Damm, C., Rellinghaus, B., Knobel, M., & Socolovsky, L. M. (2017). Synthesis process, size and composition effects of spherical Fe3O4 and FeO@Fe3O4 core/shell nanoparticles. New Journal of Chemestry, 41, 15033–15041.CrossRefGoogle Scholar
  19. 19.
    Xu, R., Jiang, H., Song, C., Rodriguez, J. A., Huang, Z., Chen, C.-C., Nam, D., Park, J., et al. (2014). Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nature Communications, 5, 4061.CrossRefGoogle Scholar
  20. 20.
    Barke, I., Hartmann, H., Rupp, D., Flückiger, L., Sauppe, M., Adolph, M., Schorb, S., Bostedt, C., et al. (2015). The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nature Communications, 6, 6187.CrossRefGoogle Scholar
  21. 21.
    Pedersen, J. (1994). Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. Journal of Applied Crystallography, 27, 595–608.CrossRefGoogle Scholar
  22. 22.
    Nakamura, K., Kawabata, T., & Mori, Y. (2003). Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance. Powder Technology, 131, 120–128.CrossRefGoogle Scholar
  23. 23.
    Skou, S., Gillilan, R. E., & Ando, N. (2014). Synchrotron-based small-angle X-ray scattering of proteins in solution. Nature Protocols, 9, 1727–1739.CrossRefGoogle Scholar
  24. 24.
    Goertz, V., Dingenouts, N., Nirschl, H., et al. (2009). Particle & Particle Systems Characterization, 26, 17–24.CrossRefGoogle Scholar
  25. 25.
    Kohlbrecher, J. (2014). SASfit: A program for fitting simple structural models to small angle scattering data. Paul Scherrer Institute.Google Scholar
  26. 26.
    Pedersen, J. S. (1997). Analysis of small-angle data from colloids and polymer solutions: Modeling and least-squares fitting. Advance in Colloid and Interface Science, 70, 171–210.CrossRefGoogle Scholar
  27. 27.
    Khan, L. U., Muraca, D., Brito, H. F., Moscoso-Londono, O., Felinto, M. C. F. C., Pirota, K. R., Teotonio, E. E. S., & Malta, O. L. (2016). Journal of Alloys and Compounds, 686, 453–466.CrossRefGoogle Scholar
  28. 28.
    Orozco-Henao, J. M., Coral, D. F., Muraca, D., Moscoso-Londono, O., Mendoza Zelis, P., Fernandez van Raap, M. B., Sharma, S. K., Pirota, K. R., & Knobel, M. (2016). The Journal of Physical Chemitry C, 120, 12796–12809.CrossRefGoogle Scholar
  29. 29.
    Agbabiaka, A., Wiltfong, M., & Park, C. (2013). Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. Journal of Nanoparticles, 2013, 640436.CrossRefGoogle Scholar
  30. 30.
    Müller, J. J., Damaschun, G., & Hübner, G. (1979). Small angle X-ray scattering studies on the structure and symmetry of yeast pyruvate decarboxylase in solution. Acta Biologica et Medica Germanica, 38(1), 1–10.Google Scholar
  31. 31.
    Pedersen, J. S., Oliveira, C. L. P., Hübschmann, H. B., Arleth, L., Manniche, S., Kirkby, N., & Nielsen, H. M. Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle X-ray scattering. Biophysical Journal, 102(10), 2372–2380.CrossRefGoogle Scholar
  32. 32.
    Oliveira, C. L. P., Behrens, M. A., Pedersen, J. S., Erlacher, K., Otzen, D., & Pedersen, J. S. Journal of Molecular Biology, 387(1), 147–161.Google Scholar
  33. 33.
    Moscoso-Londoño, O., Gonzalez, J. S., Muraca, D., Hoppe, C. E., Alvarez, V. A., López-Quintela, A., Socolovsky, L. M., & Pirota, K. R. (2013). European Polymer Journal, 49(2), 279–289.CrossRefGoogle Scholar
  34. 34.
    Moscoso-Londoño, O., Tancredi, P., Muraca, D., Mendoza Zélis, P., Coral, D., Fernández van Raap, M. B., Wolff, U., Neu, V., Damm, C., de Oliveira, C. L. P., Pirota, K. R., Knobel, M., & Socolovsky, L. M. (2017). Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems. Journal of Magnetism and Magnetic Materials, 428, 105–118.CrossRefGoogle Scholar
  35. 35.
    Meiorin, C., Moscoso-Londoño, O., Muraca, D., Socolovsky, L. M., Pirota, K. R., Aranguren, M. I., Knobel, M., & Mosiewicki, M. A. Materials Chemistry and Physics, 175, 81–91.Google Scholar
  36. 36.
    Baxter, R. J. (1968). Percus-Yevick equation for hard spheres with surface adhesión. The Journal of Chemical Physics, 49(6), 2770–2774.CrossRefGoogle Scholar
  37. 37.
    Hansen, J. P., & Hayter, J. B. (1982). A rescaled mean spherical approximation structure factor for dilute charged colloidal dispersion. Molecular Physics, 46, 651–656.CrossRefGoogle Scholar
  38. 38.
    Percus, J. K., & Yevick, G. J. (1958). Analysis of classical statistical mechanics by means of collective coordinates. Physical Review, 110(1), 1–13.CrossRefGoogle Scholar
  39. 39.
    Rogers, F. J., & Young, D. A. (1984). New, thermodynamically consistent, integral equation for simple fluids. Physical Review A, 30, 999–1007.CrossRefGoogle Scholar
  40. 40.
    Lee, L. L. (1995). An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation. The Journal of Chemical Physics, 103(21), 9388–9396.CrossRefGoogle Scholar
  41. 41.
    Chen, S.-H., & Teixeira, J. (1986). Structure and fractal dimension of protein-detergent complexes. Physical Review Letters, 57, 2583.CrossRefGoogle Scholar
  42. 42.
    Moscoso-Londono, O., Carriao, M. S., Cosio-Castaneda, C., Bilovol, V., Martinez Sanchez, R., Lede, E. J., Socolovsky, L. M., & Martinez-Garcia, R. (2013). Materials Research Bulletin, 48, 3474–3478.CrossRefGoogle Scholar
  43. 43.
    Schaefer, D. W. (1989). Polymers, fractals, and ceramic materials. Science, 243, 1023–1027.CrossRefGoogle Scholar
  44. 44.
    Thesis. Physics Institute, University of La Plata. (2015).Google Scholar
  45. 45.
    Teixeira, J. (1988). Small-angle scattering by fractal systems. Journal of Applied Crystallography, 21, 781–785.CrossRefGoogle Scholar
  46. 46.
    Moscoso-Londono, O., Muraca, D., Tancredi, P., Cosio-Castaneda, C., Pirota, K. R., & Socolovsky, L. M. (2014). Physicochemical studies of complex silvermagnetite nanoheterodimers with controlled morphology. The Journal of Physics Chemistry C, 118, 13168–13176.CrossRefGoogle Scholar
  47. 47.
    Beaucage, G. (1995). Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 28, 717–728.CrossRefGoogle Scholar
  48. 48.
    Hernández, R., Sacristán, J., Nogales, A., Ezquerra, T. A., & Mijangos, C. (2009). Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering. Langmuir, 25, 13212–13218.CrossRefGoogle Scholar
  49. 49.
    Socolovsky, L. M., & Moscoso Londoño, O. (2017). Consequences of magnetic interaction phenomena in granular systems. In S. Sharma (Ed.), Complex magnetic nanostructures. Cham: Springer.Google Scholar
  50. 50.
    Chu, B., & Hsiao, B. S. (2001). Small-angle X-ray scattering of polymers. Chemical Reviews, 101(6), 1727–1762.CrossRefGoogle Scholar
  51. 51.
    Ritland, H. N., Kaesberg, P., & Beeman, W. W. (1950). Double crystal and slit methods in small angle X-ray scattering. Journal of Applied Physics, 21(8), 838.CrossRefGoogle Scholar
  52. 52.
    Bonse, U., & Hart, M. (1966). Small angle X-ray scattering by spherical particles of polystyrene and Polyvinyltoluene. Zeitschrift Für Physikalische, 189, 151–162.CrossRefGoogle Scholar
  53. 53.
    Chu, B., Li, Y., Gao, T., Chua, B., & Ao, T. G. (1992). A Bonse–Hart ultrasmall angle x-ray scattering instrument employing synchrotron and conventional x-ray sources. Review Scientific Instruments, 63, 4128.CrossRefGoogle Scholar
  54. 54.
    Amemiya, Y. (1997). X-Ray storage-phosphor imaging-plate detectors: High-sensitivity X-ray area detector, In: Academic Press (Ed.), Methods enzymol. 276th ed., Elsevier, (pp. 233–243).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oscar Moscoso Londoño
    • 1
    • 2
    Email author
  • Pablo Tancredi
    • 3
  • Patricia Rivas
    • 3
  • Diego Muraca
    • 1
  • Leandro M. Socolovsky
    • 4
  • Marcelo Knobel
    • 1
  1. 1.Gleb Wataghin Institute of PhysicsUniversity of CampinasCampinasBrazil
  2. 2.Faculty of EngineeringAutonomous University of ManizalesManizalesColombia
  3. 3.Laboratory of Amorphous Solids, Faculty of EngineeringUniversity of Buenos AiresBuenos AiresArgentina
  4. 4.Santa Cruz Regional FacultyNational Technological University – CIT-Santa Cruz (CONICET)Rio GallegosArgentina

Personalised recommendations