Introduction to X-Ray Absorption Spectroscopy and Its Applications in Material Science

  • Aditya SharmaEmail author
  • Jitendra Pal Singh
  • Sung Ok Won
  • Keun Hwa Chae
  • Surender Kumar Sharma
  • Shalendra Kumar


X-ray absorption spectroscopy (XAS) with its two amendments, (i) X-ray absorption near-edge structure (XANES) and (ii) extended X-ray absorption fine structure (EXAFS), is a powerful technique for studying the electronic state of the solids where the important asset of the absorbing element can be ascertained using the excitation of core electrons with local and sensitive probe. The XANES is strongly sensitive to the formal oxidation state and coordination chemistry (i.e., tetrahedral or octahedral coordination) of absorbing atom, while the EXAFS is used to determine the distance, coordination number, and species of the neighbors of the absorbing atoms. This chapter describes the origin and interpretation of XANES-EXAFS spectra, with a hope of enhancing the ability of the reader to perform XANES-EXAFS measurements at beamline end stations or lab-source XAS machines. This chapter also contains brief discussion of XAS fundamental, XANES-EXAFS data collection in different modes, and data analysis/processing with modern ab initio calculations based on software packages and exclusively describes various applications of XANES-EXAFS on several oxide materials.


X-ray absorption spectroscopy XANES EXAFS Oxidation state and coordination Ab initio calculations 


  1. 1.
    de Groot, F., & Kotani, A. (2008). Core level spectroscopy of solids. Boca Raton: CRC Press.CrossRefGoogle Scholar
  2. 2.
    Bunker, G. (2010). Introduction to XAFS. Cambridge: Cambridge University Press, UK.Google Scholar
  3. 3.
    Newville, M. (2014). Reviews in Mineralogy and Geochemistry, 78, 33–74.CrossRefGoogle Scholar
  4. 4.
    Schnohr, C. S., & Ridgway, M. C. (2015). X-ray absorption spectroscopy of semiconductors. Springer series in optical sciences. Springer-Verlag Berlin Heidelberg.Google Scholar
  5. 5.
    Sharma, A., Varshney, M., Shin, H. J., Lee, B. H., Chae, K. H., & Won, S. O. (2017). Materials Chemistry and Physics, 191, 129.CrossRefGoogle Scholar
  6. 6.
    Sun, Z., Yan, W., Yao, T., Liu, Q., Xie, Y., & Wei, S. (2013). Dalton Transactions, 42, 13779.CrossRefGoogle Scholar
  7. 7.
    Rehr, J. J., & Ankudinov, A. L. (2005). Coordination Chemistry Reviews, 249, 131.CrossRefGoogle Scholar
  8. 8.
    Rehr, J. J., & Albers, R. C. (2000). Reviews of Modern Physics, 72, 621.CrossRefGoogle Scholar
  9. 9.
    Chen, J. G. (1997). Surface Science Reports, 30, 1.CrossRefGoogle Scholar
  10. 10.
    de Groot, F. (1994). Journal of Electron Spectroscopy and Related Phenomena, 67, 529.CrossRefGoogle Scholar
  11. 11.
    Carra, P., & Altarelli, M. (1990). Physical Review Letters, 64, 1286.CrossRefGoogle Scholar
  12. 12.
    Balerna, A., & Mobilio, S. (2015). Introduction to synchrotron radiation. In: S. Mobilio, F. Boscherini, C. Meneghini (Eds.), Synchrotron radiation-basics, methods and applications (pp. 1–28). Heidelberg, New York, Dordrecht, London: Springer. Google Scholar
  13. 13.
    Hwang, H.-N., Kim, H. S., Kim, B., Hwang, C. C., Moon, S. W., Chung, S. M., Jeon, C., Park, C.-Y., Chae, K. H., & Choi, W. K. (2007). Nuclear Instruments and Methods in Physics Research A, 581, 850–855.CrossRefGoogle Scholar
  14. 14.
    Lee, I.-J., Yu, C.-J., Yun, Y.-D., Lee, C.-S., Seo, I. D., Kim, H.-Y., Lee, W.-W., & Chae, K. H. (2010). Review of Scientific Instruments, 81, 026103. 15. Binsted, N., Strange, R. W., Hasnain, S. S. (1992). Biochemistry, 31, 12117–12125.CrossRefGoogle Scholar
  15. 15.
    Gurman, S. J., Binsted, N., & Ross, I. (1986). Journal of Physics C, 19, 1845–1861.CrossRefGoogle Scholar
  16. 16.
    Filipponi, A., DiCicco, A., & Natoli, C. R. (1995). Physical Review B, 52, 15122–15134.CrossRefGoogle Scholar
  17. 17.
    Filipponi, A., & DiCicco, A. (1995). Physical Review B, 52, 15135–15149.CrossRefGoogle Scholar
  18. 18.
    Dicicco, A. (1995). Physica B, 209, 125–128.CrossRefGoogle Scholar
  19. 19.
    Gaur, A., Shrivastava, B. D., & Nigam, H. L. (2013). Proceedings of the Indian National Science Academy, 79, 921–966.Google Scholar
  20. 20.
    Kelly, S. D., Hesterberg, D., & Ravel, B. (2008). Methods of soil analysis part 5 mineralogical methods chapter 14. Madison: Soil Science Society of America.Google Scholar
  21. 21.
    Koningsberger, D. C., Mojet, B. L., Van Dorssen, G. E., & Ramaker, D. E. (2000). XAFS spectroscopy; fundamental principles and data analysis. Topics in Catalysis, 10, 143–155.CrossRefGoogle Scholar
  22. 22.
    Thakur, P., Bisogni, V., Cezar, J. C., Brookes, N. B., Ghiringhelli, G., Gautam, S., Chae, K. H., Subramanian, M., Jayavel, R., & Asokan, K. (2010). Journal of Applied Physics, 107, 103915.CrossRefGoogle Scholar
  23. 23.
    Kumar, S., Kim, Y. J., Koo, B. H., Sharma, S. K., Vargas, J. M., Knobel, M., Gautam, S., Chae, K. H., Kim, D. K., Kim, Y. K., & Lee, C. G. (2009). Journal of Applied Physics, 105, 07C520.CrossRefGoogle Scholar
  24. 24.
    Kumar, S., Koo, B. H., Lee, C. G., Gautam, S., Chae, K. H., Sharma, S. K., & Knobel, M. (2011). Journal of Nanoscience and Nanotechnology, 11, 396–401.CrossRefGoogle Scholar
  25. 25.
    Kumar, Y., Singh, A. P., Sharma, S. K., Choudhary, R. J., Thakur, P., Knobel, M., Brookes, N. B., & Kumar, R. (2012). Applied Physics Letters, 101, 112103.CrossRefGoogle Scholar
  26. 26.
    Kumar, S., Vats, P., Gautam, S., Gupta, V. P., Verma, K. D., Chae, K. H., Hashim, M., & Choi, H. K. (2014). Materials Research Bulletin, 59, 377–3814.CrossRefGoogle Scholar
  27. 27.
    Sharma, A., Singh, A. P., Thakur, P., Brookes, N. B., Kumar, S., Lee, C. G., Choudhary, R. J., Verma, K. D., & Kumar, R. (2010). Journal of Applied Physics, 107, 093918.CrossRefGoogle Scholar
  28. 28.
    Kumar, R., Singh, A. P., Thakur, P., Chae, K. H., Choi, W. K., Angadi, B., Kaushik, S. D., & Patnaik, S. (2008). Journal of Physics D: Applied Physics, 41, 155002.CrossRefGoogle Scholar
  29. 29.
    Sharma, A., Varshney, M., Kang, S., Baik, J., Ha, T. K., Chae, K. H., Kumar, S., & Shin, H. J. (2016). Advanced Materials Letters, 7, 17–22.CrossRefGoogle Scholar
  30. 30.
    Sharma, A., Varshney, M., Shin, H. J., Kumar, Y., Gautam, S., & Chae, K. H. (2014). Chemical Physics Letters, 592, 85–89.CrossRefGoogle Scholar
  31. 31.
    Sharma, A., Varshney, M., Park, J. H., Ha, T. K., Chae, K. H., & Shin, H. J. (2015). RSC Advances, 5, 21762–21771.CrossRefGoogle Scholar
  32. 32.
    Sharma, A., Varshney, M., Shin, H. J., Park, Y. J., Kim, M. G., Ha, T. K., Chae, K. H., & Gautam, S. (2014). Physical Chemistry Chemical Physics, 16, 19909–19916.CrossRefGoogle Scholar
  33. 33.
    Sharma, A., Varshney, M., Park, J. H., Ha, T. K., Chae, K. H., & Shin, H. J. (2015). Physical Chemistry Chemical Physics, 17, 30065–30075.CrossRefGoogle Scholar
  34. 34.
    Sharma, A., Varshney, M., Lim, W. C., Shin, H. J., Singh, J. P., Won, S. O., & Chae, K. H. (2017). Physical Chemistry Chemical Physics, 19, 6397–6405.CrossRefGoogle Scholar
  35. 35.
    Khemthong, P., Photai, P., & Grisdanurak, N. (2013). International Journal of Hydrogen Energy, 38, 15992–16001.CrossRefGoogle Scholar
  36. 36.
    Bagherzadeh, M., Mousavi, N., Amini, M., Gautam, S., Singh, J. P., & Chae, K. H. (2017). Chinese Chemical Letters, 28, 1125–1130.CrossRefGoogle Scholar
  37. 37.
    Singh, J. P., Kim, S. H., Won, S. O., Lim, W. C., Lee, I.-J., & Chae, K. H. (2016). CrystEngComm, 18, 2701–2711.CrossRefGoogle Scholar
  38. 38.
    Singh, J. P., Gautam, S., Srivastava, R. C., Asokan, K., Kanjilal, D., & Chae, K. H. (2015). Superlattices and Microstructures, 86, 390–394.CrossRefGoogle Scholar
  39. 39.
    Dixit, G., Singh, J. P., Chen, C. L., Dong, C. L., Srivastava, R. C., Agrawal, H. M., Pong, W. F., & Asokan, K. (2013). Journal of Alloys and Compounds, 581, 178–185.CrossRefGoogle Scholar
  40. 40.
    Kumar, H., Srivastava, R. C., Singh, J. P., Negi, P., Agrawal, H. M., Das, D., & Chae, K. H. (2016). Journal of Magnetism and Magnetic Materials, 401, 16–21.CrossRefGoogle Scholar
  41. 41.
    Gomes, J. A., Azevedo, G. M., Depeyrot, J., Mestnik-Filho, J., da Silva, G. J., Tourinho, F. A., & Perzynski, R. (2011). Journal of Magnetism and Magnetic Materials, 323, 1203–1206.CrossRefGoogle Scholar
  42. 42.
    Carta, D., Casula, M. F., Mountjoyz, G., & Corrias, A. (2008). Physical Chemistry Chemical Physics, 10, 3108–3117.CrossRefGoogle Scholar
  43. 43.
    Yao, T. (1993). Japanese Journal of Applied Physics, 32, 755–757.CrossRefGoogle Scholar
  44. 44.
    Mishra, A., Mehjabeen, k., Jarabana, K. M., & Bisen, S. (2016). Journal of Physics Conference Series, 755, 012044.CrossRefGoogle Scholar
  45. 45.
    Calvin, S., Carpenter, E. E., Ravel, B., Harris, V. G., & Morrison, S. A. (2002). Physical Review B, 66, 224405.CrossRefGoogle Scholar
  46. 46.
    Nakashima, S., Fujita, K., Tanaka, K., Hirao, K., Yamamoto, T., & Tanaka, I. (2007). Physical Review B, 75, 174443.CrossRefGoogle Scholar
  47. 47.
    Torres, C. E. R., Golmar, F., Ziese, M., Esquinazi, P., & Heluani, S. P. (2011). Physical Review B, 84, 06440.Google Scholar
  48. 48.
    Oliver, S. A., Harris, V. G., Hamdeh, H. H., & Ho, J. C. (2000). Applied Physics Letters, 76, 2761.CrossRefGoogle Scholar
  49. 49.
    Stewart, S. J., Figueroa, S. J. A., López, J. M. R., Marchetti, S. G., Bengoa, J. F., Prado, R. J., & Requejo, F. G. (2007). Physical Review B, 75, 073408.CrossRefGoogle Scholar
  50. 50.
    Singh, J. P., Won, S. O., Lim, W. C., Lee, I.-J., & Chae, K. H. (2016). Journal of Molecular Structure, 1108, 444–450.CrossRefGoogle Scholar
  51. 51.
    Kumar, H., Singh, J. P., Srivastava, R. C., Patel, R. P., & Chae, K. H. (2017). Superlattices and Microstructures, 109, 296–306.CrossRefGoogle Scholar
  52. 52.
    Parsons, J. G., Aldrich, M. V., & Gardea-Torresdey, J. L. (2002). Applied Physics Reviews, 37, 187–122.Google Scholar
  53. 53.
    Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental Science & Technology, 50, 7290–7304.CrossRefGoogle Scholar
  54. 54.
    Que, L., Jr., & Tolman, W. B. (2008). Biologically inspired oxidation catalysis. Nature, 455, 333–340.CrossRefGoogle Scholar
  55. 55.
    Hummer, A. A., & Rompel, A. (2013). Metallomics, 5, 597–614.CrossRefGoogle Scholar
  56. 56.
    Tiemann, K. J., Gardea-Torresdey, J. L., Gamez, G., Dokken, K., Sias, S., Renner, M. W., & Furenlid, L. R. (1999). Environmental Science & Technology, 33, 150–154.CrossRefGoogle Scholar
  57. 57.
    Dwivedi, A. D., Sanandiya, N. D., Singh, J. P., Husnain, S. M., Chae, K. H., Hwang, D. S., & Chang, Y.-S. (2017). ACS Sustainable Chemistry & Engineering, 5, 518–528.CrossRefGoogle Scholar
  58. 58.
    Kretschmer, X. C., Meitzner, G., Gardea-Torresdey, J. L., & Webb, R. (2004). Applied and Environmental Microbiology, 70, 771–780.CrossRefGoogle Scholar
  59. 59.
    Singh, J. P., Gautam, S., Singh, B. B., Chaudhary, S., Kabiraj, D., Kanjilal, D., Chae, K. H., Kotnala, R., Lee, J.-M., Chen, J.-M., & Asokan, K. (2014). Advanced Materials Letters, 5, 372–377.CrossRefGoogle Scholar
  60. 60.
    Gautam, S., Asokan, K., Singh, J. P., Chang, F.-H., Lin, H.-J., & Chae, K. H. (2014). Journal of Applied Physics, 115, 17C109.CrossRefGoogle Scholar
  61. 61.
    Singh, J. P., Kaur, B., Gautam, S., Lim, W. C., Asokan, K., Kanjilal, D., & Chae, K. H. (2016). Superlattices and Microstructures, 100, 560–586.CrossRefGoogle Scholar
  62. 62.
    Singh, J. P., Gautam, S., Singh, B. B., Raju, M., Chaudhary, S., Kabiraj, D., Kanjilal, D., Lee, J.-M., Chen, J.-M., Asokan, K., & Chae, K. H. (2017). Vacuum, 138, 48–54.CrossRefGoogle Scholar
  63. 63.
    Singh, J. P., Lim, W. C., & Chae, K. H. (2015). Superlattices and Microstructures, 88, 609–619.CrossRefGoogle Scholar
  64. 64.
    Singh, J. P., Lim, W. C., Gautam, S., Asokan, K., & Chae, K. H. (2016). Materials and Design, 101, 72–79.CrossRefGoogle Scholar
  65. 65.
    Singh, J. P., Lim, W. C., Won, S. O., Lee, J., Lee, I.-J., & Chae, K. H. (2018). Applied Surface Science, 432, 132–139.CrossRefGoogle Scholar
  66. 66.
    Kumar, S., Gautam, S., Song, T. K., Chae, K. H., Jang, K. W., & Kim, S. S. (2014). Journal of Alloys and Compounds, 611, 329–334.CrossRefGoogle Scholar
  67. 67.
    Tsunekawa, S., Fukuda, T., & Kasuya, A. (2000). Journal of Applied Physics, 87, 1318–1321.CrossRefGoogle Scholar
  68. 68.
    Feng, X., Sayle, D. C., Wang, Z. L., Paras, M. S., Santora, B., Sutorik, A. C., Sayle, T. X. T., Yang, Y., Ding, Y., Wang, X., & Her, Y.-S. (2006). Science, 312, 1504–1508.CrossRefGoogle Scholar
  69. 69.
    Mullins, D., Overbury, S., & Huntley, D. (1998). Surface Science, 409, 307–319.CrossRefGoogle Scholar
  70. 70.
    Sharma, S. K., Thakur, P., Kumar, S., Shukla, D. K., Brookes, N. B., & Lee, C. G. (2010). Thin Solid Films, 519, 410–413.CrossRefGoogle Scholar
  71. 71.
    Ahmed, F., Kumar, S., Arshi, N., Anwar, M. S., & Koo, B. H. (2012). CrystEngComm, 14, 4016–4026.CrossRefGoogle Scholar
  72. 72.
    Kumar, S., Park, J. S., Kim, D. J., Lee, M. H., Song, T. K., Gautam, S., Chae, K. H., Kim, S. S., & Kim, M.-H. (2015). Ceramics International, 41, S370–S375.CrossRefGoogle Scholar
  73. 73.
    Kumar, S., et al. (2007). Journal of Physics: Condensed Matter, 19, 476210.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aditya Sharma
    • 1
    Email author
  • Jitendra Pal Singh
    • 1
  • Sung Ok Won
    • 1
  • Keun Hwa Chae
    • 1
  • Surender Kumar Sharma
    • 2
  • Shalendra Kumar
    • 3
  1. 1.Advance Analysis Center, Korea Institute of Science and TechnologySeoulSouth Korea
  2. 2.Department of PhysicsFederal University of MaranhãoSão Luis, MaranhãoBrazil
  3. 3.Department of Applied Physics, Amity School of Applied SciencesAmity University HaryanaGurgaonIndia

Personalised recommendations