Photoelectron Spectroscopy: Fundamental Principles and Applications

  • Jagdish KumarEmail author


Understanding the behaviour of electrons inside a material provides many important clues to tune variety of properties of a material. The spectroscopic techniques based upon analysis of ejected photoelectrons from a material provide direct access to electronic states of that material. This chapter presents a quick introduction to photoelectron spectroscopy and few basic applications. Although there are many dedicated books and review articles on these techniques, we aim to provide the reader with a concise overview of the technique without involving complex details. A brief overview of theoretical techniques to compute electronic structure of material is also presented. We hope that this chapter will offer a simplified introduction of working and applications of photoelectron spectroscopic techniques.


Photoelectron spectroscopy Valence band spectroscopy Synchrotron radiation Ultraviolet photoelectron spectroscopy Angle-resolved photoelectron spectroscopy 


  1. 1.
    Darrigol, O. (2012). A history of optics from Greek antiquity to nineteenth century. New York: Oxford University Press.Google Scholar
  2. 2.
    Walter, G. (1948). Microwave Spectroscopy. Rev. Mod. Phys, 20, 668.CrossRefGoogle Scholar
  3. 3.
    Tissue, B. M. (2002). Ultraviolet and visible absorption spectroscopy. New York: Wiley. Scholar
  4. 4.
    Owen, T. (2000). Fundamentals of modern UV-visible spectroscopy. Germany: Agilent Technologies.Google Scholar
  5. 5.
    Stuart, B. (2004). IR spectroscopy: Fundamentals and applications. Chichester: Wiley.CrossRefGoogle Scholar
  6. 6.
    Chen, L. X., Zhang, X., & Shelby, M. L. (2014). Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chemical Science, 5, 4136.CrossRefGoogle Scholar
  7. 7.
    Gilmore, G. Practical gamma-ray spectroscopy. Wiley.
  8. 8.
    Brundle, C. R., & Baker, A. D. (1978). Electron spectroscopy: Theory, techniques and applications. London: Academic.Google Scholar
  9. 9.
    Brooks, F. D., & Klein, H. (2002). Neutron spectrometry historical review and present status. Nuclear Instruments and Methods in Physics Research A, 476, 1–11.CrossRefGoogle Scholar
  10. 10.
    Yano, J., & Yachandra, V. K. (2009). X-ray absorption spectroscopy. Photosynthesis Research, 102, 241.CrossRefGoogle Scholar
  11. 11.
    Cardona, M., & Ley, L. (1978). Photoemission in solids (Vol. I and II). New York: Springer-Verlag.CrossRefGoogle Scholar
  12. 12.
    Bings, N. H., Bogaerts, A., & Broekaert, J. A. C. (2010). Atomic spectroscopy: A review. Analytical Chemistry, 82, 4653.CrossRefGoogle Scholar
  13. 13.
    Dillane, S., Thompson, M., Meyer, J., Norquay, M., & Christopher O’Brien, R. (2011). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) as a method of species differentiation of bone fragments. Australian Journal of Forensic Sciences, 43, 297.CrossRefGoogle Scholar
  14. 14.
    Hufner, S. (2003). Photoelectron spectroscopy: Principles and applications. New York: Springer.CrossRefGoogle Scholar
  15. 15.
    X-ray transition energies database NIIST.
  16. 16.
    Moseley, H. G. J. (1913). High frequency spectra of elements. Philosophical Magazine, 26, 1024.Google Scholar
  17. 17.
  18. 18.
    Reinert, F., & Hufner, S. (2005). Photoemission spectroscopy-from early days to recent applications. New Journal of Physics, 7, 97.CrossRefGoogle Scholar
  19. 19.
    Ellis, A., Feher, M., & Wright, T. (2005). Electronic and photoelectron spectroscopy: Fundamentals and case studies. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  20. 20.
    Griffiths, D. J. Introduction to electrodynamics. Cambridge University Press.
  21. 21.
    Flynn, C. Lecture notes on “FFYS4346 Astrophysics II”, Lecture 4: Synchrotron Radiation.
  22. 22.
    Kimura, K. (1999). Development of laser photoelectron spectroscopy based on resonantly enhanced multiphoton ionization. Journal of Electron Spectroscopy and Related Phenomena, 100, 273.CrossRefGoogle Scholar
  23. 23.
    Ishikawa, T., Tamasaku, K., & Yabash, M. (2005). High-resolution X-ray monochromator. Nuclear Instruments and Methods in Physics Research A, 547, 42.CrossRefGoogle Scholar
  24. 24.
    Grivet, P. Electron optics. Translated by P.W. Hawkes revised by A. Septier Pergamon Press, Oxford, New York, Toronto, Sydney.Google Scholar
  25. 25.
    McCord, M. A., & Rooks, M. J. (1997). In P. Rai-Choudhary (Ed.), Handbook of microlithography, micromachining and microfabrication, volume 1, Microlithography. SPIE Working Group
  26. 26.
  27. 27.
    Hu, J., Rovey, J. L., & Zhao, W. (2017). Retarding field energy analyzer for high energy pulsed electron beam measurements. The Review of Scientific Instruments, 88, 013302.CrossRefGoogle Scholar
  28. 28.
    Halliday, D., Resnick R., & Walker, J. Fundamentals of physics. Wiley.
  29. 29.
    Perriard, D. (2012). Characterization of a novel spin detector based on spin diffraction on a crystal. Master Thesis at ETH Zurich.Google Scholar
  30. 30.
    Wiza, J. L. (1979). Microchannel plate detectors. Nuclear instruments & Methods, 162, 587.Google Scholar
  31. 31.
    Boster, E. & Behm, T. (2010). “CCD Camera Operation and Theory
  32. 32.
    Hablanian, M. (1997). High-vacuum technology, a practical guide. Marcel Dekker, Inc. Google Scholar
  33. 33.
    Marquardt, N. Introduction to the principles of vacuum physics.
  34. 34.
  35. 35.
    Lindberg, V. (2008). Course on Lab Techniques, Rochester Institute of Technology, Chapter 6, Vacuum pumps.
  36. 36.
    Umrath, W. Fundamentals of vacuum technology
  37. 37.
  38. 38.
  39. 39.
    Laporte, O., & Meggers, W. F. (1925). Some rules of spectral structure. Journal of the Optical Society of America, 11, 459.CrossRefGoogle Scholar
  40. 40.
    Capelle, K. (2006). A birds-eye view of density-functional theory. arxiv:cond-mat/0211443.CrossRefGoogle Scholar
  41. 41.
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    Huschka, W., Ross, D., Maier, M., & Umbach, E. (1988). Calibrated binding energies of some core levels in the energy range between 1.5–4keV. Journal of Electron Spectroscopy and Related Phenomena, 46, 273.CrossRefGoogle Scholar
  46. 46.
    Brox, B., & Olefjord, I. (1988). ESCA studies of MoO2 and MoO3. Surface and Interface Analysis, 13, 3.CrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
    Lindau, I., & Hagstrom, S. B. M. (1971). High resolution electron energy analyser at ultrahigh vacuum conditions. Journal de Physique, E4, 936.Google Scholar
  50. 50.
    Niehus, H., & Bauer, E. (1975). Low energy ion backscattering spectroscopy (ISS) with a commercial Auger cylindrical mirror analyzer (CMA). The Review of Scientific Instruments, 46, 1275.CrossRefGoogle Scholar
  51. 51.
    Knapp, J. A., Lapeyre, G. J., Smith, N. V., & Traum, M. M. (1982). Modification of cylindrical mirror analyser for angle resolved photoelectron spectroscopy. The Review of Scientific Instruments, 53, 781.CrossRefGoogle Scholar
  52. 52.
    Chiang, T. C., Knapp, J. A., & Eastman, D. E. (1979). Angle resolved photo-emission and valence band dispersions E(k) for GaAs: Direct vs indirect models. Solid State Communications, 31, 917.CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Pandey, K. C., & Phillips, J. C. (1974). Nonlocal pseudopotentials for Ge and GaAs. Physical Review B, 9, 1552.CrossRefGoogle Scholar
  55. 55.
    Chiang, T. C., Knapp, J. A., Aono, M., & Eastman, D. E. (1980). Angle resolved photo-emission, valence band dispersion E(k) and electron and hole lifetimes for GaAs. Physical Review B, 21, 3513.CrossRefGoogle Scholar
  56. 56.
    Courths, R., Wern, H., Hau, U., Cord, B., Bachelier, V., & Hufner, S. (1984). Band structure of Cu, Ag and Au: Location of direct transitions on Λ line using angle-resolved photoelectron spectroscopy. Journal of Physics F: Metal Physics, 14, 1559.CrossRefGoogle Scholar
  57. 57.
    Kane, E. (1964). Implications of crystal momentum conservation in photoelectric emission for band structure measurements. Physical Review Letters, 12, 97.CrossRefGoogle Scholar
  58. 58.
    Mahatha, S. K., Patel, K. D., & Krishnakumar, S. R. M. (2012). Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoelectron spectroscopy and ab-initio band structure studies. Journal of Physics: Condensed Matter, 24, 475504.Google Scholar
  59. 59.
    Kordyuk, A. A. (2014). ARPES experiment in fermiology of quasi-2D metals. Low Temperature Physics, 40, 286.CrossRefGoogle Scholar
  60. 60.
    Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2009). Observation of a large gap topological class with a single Dirac cone on the surface. Nature Physics, 5, 398.CrossRefGoogle Scholar
  61. 61.
    Pulizzi, F. (2012). Spintronics. Nature Materials, 11, 367.CrossRefGoogle Scholar
  62. 62.
    Pierce, D. T., Cellota, R. J., Kelley, M. H., & Unguris, J. (1988). Electron spin polarization analyzers for use with synchrotron radiation. Nuclear Instruments and Methods in Physics Research, A266, 550.CrossRefGoogle Scholar
  63. 63.
    Pierce, D. T., Kuyatt, C. E., & Celotta, R. J. (1979). Spin and energy analyzed photoemission: A feasibility analysis. The Review of Scientific Instruments, 50, 1467.CrossRefGoogle Scholar
  64. 64.
    Hughes, V. W., Long, R. L., Jr., Lubell, M. S., Posner, M., & Raith, W. (1972). Polarized electrons from photoionization of polarized alkali atoms. Physical Review A, 5, 195.CrossRefGoogle Scholar
  65. 65.
    Fletcher, G. D., Gay, T. J., & Lubell, M. S. (1986). New insights into Mott-scattering electron polarimetry. Physical Review A, 34, 911.CrossRefGoogle Scholar
  66. 66.
    Wainwright, P. F., Alguard, M. J., Baum, G., & Lubell, M. S. (1978). Application of a dc Fano effect polarized electron source to low-energy atom scattering. Review of Scientific Instruments, 49, 571.CrossRefGoogle Scholar
  67. 67.
    Sherman, N. (1956). Coulomb scattering of relativistic electrons by point nuclei. Physics Review, 103, 1601.CrossRefGoogle Scholar
  68. 68.
    Sherman, N., & Nelson, D. F. (1959). Determination of electron polarization by means of Mott-scattering. Physics Review, 114, 1541.CrossRefGoogle Scholar
  69. 69.
    Jozwiak, C., et al. (2010). A high efficiency spin resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Review of Scientific Instruments, 81, 053904.CrossRefGoogle Scholar
  70. 70.
    Takayama, A. Anomalous Rashba effect of Bi thin film studied by spin-resolved ARPES. Intech Open Books. Scholar
  71. 71.
    Berglund, C. N., & Spicer, W. E. (1964). Photoemission studies of copper and silver: Theory. Physics Review, 136, A1030.CrossRefGoogle Scholar
  72. 72.
    Smith, N. V. (1971). Photoemission properties of metals. Critical Reviews in Solid State and Materials Sciences, 2, 45.CrossRefGoogle Scholar
  73. 73.
    Springborg, M. Methods of electronic structure calculations: From molecules to solids. Wiley. %3A+From+Molecules+to+Solids-p-9780471979753
  74. 74.
    Born, M., & Oppenheimer, J. R. (1927). On the quantum theory of molecules. Annalen der Physik (Leipzig), 84, 457 Translated by S. M. Blinder with emendations by Brian Sutcliffe and Wolf Geppert.CrossRefGoogle Scholar
  75. 75.
    Hartree, D. R. (1928). The wave mechanics of atom with a non Coulomb central field: Part-I theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society 24, 89; Hartree, D. R. (1928). The wave mechanics of atom with a non Coulomb central field: Part-III Term values and intensities in series of optical spectra. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 426.CrossRefGoogle Scholar
  76. 76.
    Fock, V. (1930). Zeitschrift für Physik, 61, 126.CrossRefGoogle Scholar
  77. 77.
    Slater, J. C. (1929). The theory of complex spectra. Physics Review, 34, 1293.CrossRefGoogle Scholar
  78. 78.
    Jones, R. O., & Gunnarsson, O. (1989). Density functional formalism, its applications and prospects. Rev Modern Physics, 61, 689.CrossRefGoogle Scholar
  79. 79.
    Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physics Review, 136, B864.CrossRefGoogle Scholar
  80. 80.
    Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physics Review, 140, A1133.CrossRefGoogle Scholar
  81. 81.
    Thomas, L. H. (1927). Calculations of atomic fields. Proceedings of the Cambridge Philosophical Society, 23, 542; E. Fermi, Zeitschrift für Physik 48, 73 (1928).CrossRefGoogle Scholar
  82. 82.
    Loos, P.-F. (2014). Generalized local density approximation and one-dimensional finite uniform electron gases. Physical Review A, 89, 052523.CrossRefGoogle Scholar
  83. 83.
    Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. New York: Oxford University Press.Google Scholar
  84. 84.
    Langreth, D. C., & Mehl, M. J. (1983). Beyond the local density approximation in calculations of ground state electronic properties. Physical Review B, 28, 1809.CrossRefGoogle Scholar
  85. 85.
    Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review B, 38, 3098.CrossRefGoogle Scholar
  86. 86.
    Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865 and “Erratum” Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
  87. 87.
    Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density functional approximations for many electron systems. Physical Review B, 23, 5048.CrossRefGoogle Scholar
  88. 88.
    Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by stochastic method. Physical Review Letters, 45, 566.CrossRefGoogle Scholar
  89. 89.
    Marques, M. A. L., Oliveira, M. J. T., & Burnus, T. (2012). LIBXC: A library of exchange and correlation functionals for density functional theory. Computer Physics Communications, 183, 2272.CrossRefGoogle Scholar
  90. 90.
    Bohm, D., & Pines, D. (1951). A collective description of electron interactions-I magnetic interactions. Physics Review, 82, 625.CrossRefGoogle Scholar
  91. 91.
    Pines, D., & Bohm, D. (1952). A collective description of electron interactions-II collective vs individual particle aspects of the interactions. Physics Review, 85, 338.CrossRefGoogle Scholar
  92. 92.
    Bohm, D., & Pines, D. (1953). A collective description of electron interactions-III coulomb interaction in degenerate electron gas. Physics Review, 92, 609.CrossRefGoogle Scholar
  93. 93.
    Ehrenreich, H., & Cohen, M. H. (1959). A self-consistent field approach to the many electron problem. Physics Review, 115, 786.CrossRefGoogle Scholar
  94. 94.
    Ren, X., Rinke, P., Joas, C., & Scheffler, M. (2012). Random phase approximation and its applications in computational chemistry and material science. Journal of Materials Science, 47, 7447.CrossRefGoogle Scholar
  95. 95.
    Runge, E., & Gross, E. K. U. (1984). Density functional theory for time dependent systems. Physical Review Letters, 52, 997.CrossRefGoogle Scholar
  96. 96.
    van Leeuwen, R. (1998). Causality and symmetry in time dependent density functional theory. Physical Review Letters, 80, 1280.CrossRefGoogle Scholar
  97. 97.
    Keldysh, L. V. (1965). Diagram technique for non-equilibrium processes. Soviet Physics – JETP, 20, 1018.Google Scholar
  98. 98.
    Louie, S. G., & Cohen, M. L. (2006). Conceptual foundation of materials: A standard model for ground and excited states. Amsterdam: Elsevier.Google Scholar
  99. 99.
    Hedin, L., & Lundqvist, S. (1969). Effects of electron-electron and electron-phonon interactions on the one electron states of solids. Solid State Physics, 23, 1.Google Scholar
  100. 100.
    Hybertsen, M. S., & Louie, S. G. (1986). Electron correlations in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B, 34, 5390.CrossRefGoogle Scholar
  101. 101.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomical ScienceCentral University of Himachal PradeshDharamshalaIndia

Personalised recommendations