Advertisement

Raman Spectroscopy: A Potential Characterization Tool for Carbon Materials

  • Padmnabh RaiEmail author
  • Satish Kumar Dubey
Chapter

Abstract

Raman spectroscopy technique is potentially utilized to identify the chemical bonding in molecules or solids and doping in semiconducting materials. Even different forms of carbon materials could also be identified by this technique. Raman Spectroscopy helps in determining the size and conductivity of nanoscale system with high precision. The contents of this chapter include as follows: Sect. 11.2 describes the sample preparation method and instrumentation of confocal scanning microscopy which deals with the recording of Raman spectra of individual nanostructures. Section 11.3 discusses the geometrical structure, electronic band structure, phonon properties, and Raman spectra of single-walled carbon nanotubes (SWNTs). The Raman scattering of multi-walled carbon nanotubes (MWNTs) has also been discussed in Sect. 11.3. Section 11.3 presents the discussion on phonon properties and Raman scattering of graphene. In Sect. 11.5, the basic mechanism of surface-enhanced Raman spectroscopy (SERS) and its application to probe individual molecules are given. In Sect. 11.4, the momentum mapping of Raman scattering of individual nanostructures in the presence of optical nanoantenna is presented. Finally, in Sect. 11.7, summary and future aspects of this chapter is elaborated for the upcoming developments in the field of Raman scattering of nanostructures.

Keywords

Raman spectroscopy Nanoscale materials Carbon nanotubes MWNTs Momentum mapping 

References

  1. 1.
    Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47.CrossRefGoogle Scholar
  2. 2.
    Misra, A., Tyagi, P. K., Rai, P., & Misra, D. S. (2007). FTIR spectroscopy of multiwalled carbon nanotubes: A simple Approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 7, 1820.CrossRefGoogle Scholar
  3. 3.
    Chen, G., Sumanshekera, G. U., Pradhan, B. K., Gupta, R., Eklund, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Raman-active modes of single-walled carbon nanotube derived from gas-phase decomposition of CO (HiPco process). Journal of Nanoscience and Nanotechnology, 2, 621.CrossRefGoogle Scholar
  4. 4.
    Kumar, C. S. S. R. (2012). Raman spectroscopy of nanomaterials characterization. Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy. New York: Academic.Google Scholar
  6. 6.
    Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., & Dresselhaus, M. S. (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275, 187.CrossRefGoogle Scholar
  7. 7.
    Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8, 235.CrossRefGoogle Scholar
  8. 8.
    Raman spectroscopy: A simple, non-destructive way to characterize diamond and diamond-like materials. Spectroscopy Europe, 17, 10. (2005).Google Scholar
  9. 9.
    Kaufman, E. N. (2003). Characterization of materials. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  10. 10.
    Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102.CrossRefGoogle Scholar
  11. 11.
    Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78, 1667.CrossRefGoogle Scholar
  12. 12.
    Zhu, W., Wang, D., & Crozier, K. B. (2012). Direct observation of beamed Raman scattering. Nano Letters, 12, 6235.CrossRefGoogle Scholar
  13. 13.
    Chu, Y., Zhu, W., Wang, D., & Crozier, K. B. (2011). Beamed Raman: Directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate. Optics Express, 19, 20054.CrossRefGoogle Scholar
  14. 14.
    Ahmed, A., & Gordon, R. (2011). Directivity enhanced Raman spectroscopy using nanoantennas. Nano Letters, 11, 1800.CrossRefGoogle Scholar
  15. 15.
    Rai, P., Singh, T., Brulé, T., Bouhelier, A., & Finot, E. (2017). Momentum angular mapping of enhanced Raman scattering of single-walled carbon nanotube. Applied Physics Letters, 111, 043104.CrossRefGoogle Scholar
  16. 16.
    Novotny, L., & Hecht, B. (2006). Principles of nano-optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. 17.
    Dresselhaus, M. S., Dresselhaus, G., & Avouris, P. (2001). Springer series in topics in applied physics (Vol. 80). Berlin: Springer.Google Scholar
  18. 18.
    Chen, G., Sumanasekera, G. U., Pradhan, B. K., Gupta, R., Eklunf, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Journal of Nanoscience and Nanotechnology, 2, 621.CrossRefGoogle Scholar
  19. 19.
    Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., & Lieber, C. M. (2001). High yield fabrication of single-walled nanotube probe tips for atomic force microscopy. The Journal of Physical Chemistry. B, 105, 743.CrossRefGoogle Scholar
  20. 20.
    Hartmann, N., Piredda, G., Berthelot, J., Colas des Francs, G., Bouhelier, A., & Hartschuh, A. (2012). Nano Letters, 12, 177.CrossRefGoogle Scholar
  21. 21.
    Rai, P., Hartmann, N., Berthelot, J., des Francs, G. C., Hartschuh, A., & Bouhelier, A. (2012). Optics Letters, 37, 4711.CrossRefGoogle Scholar
  22. 22.
    Rai, P., Hartmann, N., Berthelot, J., Arocas, J., Colas des Francs, G., Hartschuh, A., & Bouhelier, A. (2013). Physical Review Letters, 111, 026804.CrossRefGoogle Scholar
  23. 23.
    Novoselov, K. S., et al. (2004). Science, 306, 666.CrossRefGoogle Scholar
  24. 24.
    Pandey, S., Rai, P., Patole, S., Gunes, F., Kwon, G.-D., Yoo, J.-B., Nikolaev, P., & Arepalli, S. (2012). Applied Physics Letters, 100, 043104.CrossRefGoogle Scholar
  25. 25.
    Avouris, P., & Dimitrakopoulos, C. (2012). Materialstoday, 15, 86.Google Scholar
  26. 26.
    Saito, R., Dresselhaus, M. S., & Dresselhaus, G. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.CrossRefGoogle Scholar
  27. 27.
    Harris, P. J. F. (1999). Carbon nanotubes and related materials: New materials for the twenty-first century. Cambridge: Cambridge University Press.Google Scholar
  28. 28.
    Wallace, P. R. (1947). Physics Review, 71, 622.CrossRefGoogle Scholar
  29. 29.
    Tans, S. J. (1998). Ph.D thesis, Delft University Press.Google Scholar
  30. 30.
    Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A., & Saito, R. (2002). Carbon, 40, 2043.CrossRefGoogle Scholar
  31. 31.
    Rao, A. M., Chen, J., Richter, E., Schlecht, U., Eklund, P. C., Haddon, R. C., Venkateswaran, U. D., Kwon, Y.-K., & Tomanek, D. (2001). Physical Review Letters, 86, 3895.CrossRefGoogle Scholar
  32. 32.
    Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., Mcclure, T., Dresselhaus, G., & Dresselhaus, M. S. (2001). Physical Review Letters, 86, 1118.CrossRefGoogle Scholar
  33. 33.
    Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Souza, M., Dantas, M. S. S., Pimenta, M. A., Rao, A. M., Saito, R., Liu, C., & Cheng, H. M. (2000). Physical Review Letters, 85, 2617.CrossRefGoogle Scholar
  34. 34.
    Novoselov, K. S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666.CrossRefGoogle Scholar
  35. 35.
    Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183.CrossRefGoogle Scholar
  36. 36.
    Charlier, J. C., Eklund, P. C., Zhu, J., & Ferrari, A. C. (2008). Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Topics in Applied Physics, 111, 673.CrossRefGoogle Scholar
  37. 37.
    Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4, 611.CrossRefGoogle Scholar
  38. 38.
    Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15, 564.CrossRefGoogle Scholar
  39. 39.
    Lin, Y. M., et al. (2010). 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662.CrossRefGoogle Scholar
  40. 40.
    Torrisi, F., et al. (2012). Inkjet-printed graphene electronics. ACS Nano, 6, 2992.CrossRefGoogle Scholar
  41. 41.
    Sun, Z., et al. (2009). Graphene mode-locked ultrafast laser. ACS Nano, 4, 803.CrossRefGoogle Scholar
  42. 42.
    Nemanich, R. J., Lucovsky, G., & Solin, S. A. (1977). Infrared active optical vibrations of graphite. Solid State Communications, 23, 117.CrossRefGoogle Scholar
  43. 43.
    Reich, S., & Thomsen, C. (2004). Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society A, 362, 2271.CrossRefGoogle Scholar
  44. 44.
    Pocsik, I., Hundhausen, M., Koos, M., & Ley, L. (1998). Origin of the D peak in the Raman spectrum of microcrystalline graphite. Journal of Non-Crystalline Solids, 227–230, 1083–1086.CrossRefGoogle Scholar
  45. 45.
    Maultzsch, J., Reich, S., Thomsen, C., Requardt, H., & Ordejon, P. (2004). Phonon dispersion in graphite. Physical Review Letters, 92, 075501.CrossRefGoogle Scholar
  46. 46.
    Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53, 1126.CrossRefGoogle Scholar
  47. 47.
    Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 14095.CrossRefGoogle Scholar
  48. 48.
    Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical Review Letters, 85, 5214.CrossRefGoogle Scholar
  49. 49.
    Gruneis, A., et al. (2009). Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Physical Review B, 80, 085423.CrossRefGoogle Scholar
  50. 50.
    Ferrari, A. C., et al. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97, 187401.CrossRefGoogle Scholar
  51. 51.
    Basko, D. M., Piscanec, S., & Ferrari, A. C. (2009). Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Physical Review B, 80, 165413.CrossRefGoogle Scholar
  52. 52.
    Tan, P. H., et al. (2012). The shear mode of multilayer graphene. Nature Materials, 11, 294.CrossRefGoogle Scholar
  53. 53.
    Lui, C., et al. (2012). Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12, 5539.CrossRefGoogle Scholar
  54. 54.
    Lui, C. H., & Heinz, T. F. (2013). Measurement of layer breathing mode vibrations in few-layer graphene. Physical Review B, 87, 121404.CrossRefGoogle Scholar
  55. 55.
    Sato, K., et al. (2011). Raman spectra of out-of-plane phonons in bilayer graphene. Physical Review B, 84, 035419.CrossRefGoogle Scholar
  56. 56.
    Baranov, A. V., et al. (1987). Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Optics and Spectroscopy, 62, 612.Google Scholar
  57. 57.
    Blackie, J. E., Le Ru, E. C., & Etchegoin, P. G. (2009). Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. Journal of the American Chemical Society, 131, 14466.CrossRefGoogle Scholar
  58. 58.
    Le Ru, E. C., et al. (2007). Surface enhanced Raman scattering enhancement factors: A comprehensive study. The Journal of Physical Chemistry C, 111, 13794.CrossRefGoogle Scholar
  59. 59.
    Wang, D., et al. (2013). Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Letters, 13, 2194.CrossRefGoogle Scholar
  60. 60.
    Taminiau, T. H., Stefani, F. D., Segerink, F. B., & van Hulst, N. F. (2008). Nature Photonics, 2, 234.CrossRefGoogle Scholar
  61. 61.
    Bohmler, M., Hartmann, N., Georgi, C., Hennrich, F., Green, A. A., Hersam, M. C., & Hartschuh, A. (2010). Optics Express, 18, 16443.CrossRefGoogle Scholar
  62. 62.
    Wang, D., Zhu, W., Best, M. D., Camden, J. P., & Crozier, K. B. (2013). Nano Letters, 13, 2194.CrossRefGoogle Scholar
  63. 63.
    Zhu, W., Wang, D., & Crozier, K. B. (2012). Nano Letters, 12, 6235.CrossRefGoogle Scholar
  64. 64.
    Heeg, S., Oikonomou, A., Fernandez-Garcia, R., Lehmann, C., Maier, S. A., Vijayaraghavan, A., & Reich, S. (2014). Nano Letters, 14, 1762.CrossRefGoogle Scholar
  65. 65.
    Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Mullen, K., & Moerner, W. E. (2009). Nature Photonics, 3, 654.CrossRefGoogle Scholar
  66. 66.
    Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Science, 329, 930.CrossRefGoogle Scholar
  67. 67.
    Le Ru, E. C., & Etchegoin, P. G. (2012). Annual Review of Physical Chemistry, 63, 65.CrossRefGoogle Scholar
  68. 68.
    Le Ru, E. C., & Etchegoin, P. G. (2006). Chemical Physics Letters, 423, 63.CrossRefGoogle Scholar
  69. 69.
    Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Physical Review Letters, 78, 1667.CrossRefGoogle Scholar
  70. 70.
    Nie, S., & Emory, S. R. (1997). Science, 275, 1102.CrossRefGoogle Scholar
  71. 71.
    Brule, T., Lelievre, H. Y., Bouhelier, A., Margueritat, J., Markey, L., Leray, A., Dereux, A., & Finot, E. (2014). Journal of Physical Chemistry C, 118, 17975.CrossRefGoogle Scholar
  72. 72.
    Chu, Y., Zhu, W., Wang, D., & Crozier, K. B. (2011). Optics Express, 19, 20054.CrossRefGoogle Scholar
  73. 73.
    Ahmed, A., & Gordon, R. (2011). Nano Letters, 11, 1800.CrossRefGoogle Scholar
  74. 74.
    Cançado, L. G., & Novotny, L. (2016). Observing the angular distribution of Raman scattered fields. ACS Nano, 10, 1722.CrossRefGoogle Scholar
  75. 75.
    Karaveli, S., Wang, S., Xiao, G., & Zia, R. (2013). ACS Nano, 7, 7165.CrossRefGoogle Scholar
  76. 76.
    Rao, A. M., Jorio, A., Pimenta, M. A., Dantas, M. S. S., Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2000). Physical Review Letters, 84, 1820.CrossRefGoogle Scholar
  77. 77.
    Chen, G., Sumanasekera, G. U., Pradhan, B. K., Gupta, R., Eklunf, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Journal of Nanoscience and Nanotechnology, 2, 621.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UM-DAE Centre for Excellence in Basic SciencesMumbaiIndia
  2. 2.Department of Physics and Astronomical ScienceCentral University of Himachal PradeshDharamshalaIndia
  3. 3.Instrument Design Development CentreIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations