Rare Earth Luminescence: Electronic Spectroscopy and Applications

  • Latif Ullah KhanEmail author
  • Zahid U. Khan


The luminescence exhibited by matter has raised the human curiosity for centuries. The rapid emergent of the solid-state white light-emitting diodes based on the luminescent rare earth ions, especially Ce3+ that emits a complementary color (yellow) of blue light and has central contribution to the development of white LEDs, might be considered the latest lighting devices to light the whole twenty-first century. Thus, the luminescent RE3+ compounds have been significantly studied due to their remarkable photonic applications, presently extended from lighting and displays, laser physics to material science, and agriculture and medical diagnostics (especially bioimaging of tissues and cells). Excess works in the form of peer-reviewed articles, chapters, and books have been published on rare earth luminescence and applications. Most of the books contain larger theoretical studies on the photoluminescence spectroscopy of the rare earth ions, which are not easily understandable by the nonspecialized readers and fresh researchers.

The aim of this chapter is to present concise overview on the key concept of luminescence and electronic spectroscopy of rare earth compounds: energy transfer processes, luminescence spectra and their measurements, instrumental techniques, as well as applications (bioimaging and LEDs). In accordance with the title of the book, the content of the chapter is presented in an efficient and simple way to be better understandable by the nonspecialized readers and fresh researchers.





Anno Domini


Contrast agents


Charge-coupled device


Cooperative energy transfer


Compact fluorescent light


Commission Internationale de l’Eclairage


Color-rendering index


Computed tomography




Down-conversion luminescence


Electric dipole


Energy migration-mediated upconversion


Excited-state absorption


Energy transfer


Energy transfer upconversion




Gallium indium nitride


Gallium nitride


Light-emitting diodes


Ligand-to-metal charge transfer

LPS lamps

Low-pressure sodium lamps


Micro-channel plates


Magnetic dipole

MH lamp

Metal halide lamp


Magnetic nanoparticles


Magnetic resonance imaging










Photon avalanche


Photoacoustic imaging


Photoacoustic microscopy


Positron emission tomography


Photomultiplier tubes


Quantum dots


Rare earth




Singlet state


Single-photon emission computed tomography


Triplet state


Tamm-Horsfall protein-1






Upconversion luminescence


Upconversion nanoparticles









The authors are grateful for the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and to The World Academy of Sciences (TWAS) for the advancement of science in developing countries and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil).


  1. 1.
    Tilley, R. J. D. (2010). Colour and the optical properties of materials. Chichester: Wiley.CrossRefGoogle Scholar
  2. 2.
    Sato, M., Kim, S. W., Shimomura, Y., Hasegawa, T., Toda, K., & Adachi, G. (2016). Rare earth-doped phosphors for white light-emitting diodes. In Handbook on the physics and chemistry of rare earths (Vol. 49, pp. 1–128).Google Scholar
  3. 3.
    Morrow, R. C. (2008). LED lighting in horticulture. Hort Science, 43, 1947–1950.Google Scholar
  4. 4.
    Zhu, H., Lin, C. C., Luo, W., Shu, S., Liu, Z., Liu, Y., Kong, J., Ma, E., Cao, Y., Liu, R.-S., & Chen, X. (2014). Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Communications, 5, 4312.CrossRefGoogle Scholar
  5. 5.
    Lin, C. C., & Liu, R. S. (2011). Advances in phosphors for light-emitting diodes. Journal of Physical Chemistry Letters, 2, 1268–1277.CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Tu, D., Zhu, H., & Chen, X. (2013). Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chemical Society Reviews, 42, 6924–6958.CrossRefGoogle Scholar
  7. 7.
    Bünzli J-C, G., & Eliseeva, S. V. (2013). Intriguing aspects of lanthanide luminescence. Chemical Science, 4, 1939–1949.CrossRefGoogle Scholar
  8. 8.
    Bunzli, J. C. G. (2016). Lanthanide luminescence: From a mystery to rationalization, understanding, and applications. Handbook on the Physics and Chemistry of Rare Earths, 50, 141–176.CrossRefGoogle Scholar
  9. 9.
    Bünzli, J. C. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110, 2729–2755.CrossRefGoogle Scholar
  10. 10.
    Bünzli J-C, G. (2015). On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 293–294, 19–47.CrossRefGoogle Scholar
  11. 11.
    Felinto Brito, H., Manoel Loureiro Malta, O., Claudia Franca Cunha Felinto, M., & Epaminondas de Sousa Teotonio, E. (2010). Luminescence phenomena involving metal enolates, PATAI’S Chemistry of Functional Groups (pp. 131–184). Chichester: Wiley.Google Scholar
  12. 12.
    Malta, O. L., & Gonçalves e Silva, F. R. (1998). A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 54, 1593–1599.CrossRefGoogle Scholar
  13. 13.
    de Sá, G. F., Malta, O. L., de Mello, D. C., Simas, A. M., Longo, R. L., Santa-Cruz, P. A., & da Silva, E. F. (2000). Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 196, 165–195.CrossRefGoogle Scholar
  14. 14.
    Khan, L. U., Brito, H. F., Hölsä, J., Pirota, K. R., Muraca, D., Felinto, M. C. F. C., Teotonio, E. E. S., & Malta, O. L. (2014). Red-green emitting and superparamagnetic nanomarkers containing Fe 3 O 4 functionalized with calixarene and rare earth complexes. Inorganic Chemistry, 53, 12902–12910.CrossRefGoogle Scholar
  15. 15.
    Kai, J., Felinto, M. C. F. C., Nunes, L. A. O., Malta, O. L., & Brito, H. F. (2011). Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide–β-diketonate complexes. Journal of Materials Chemistry, 21, 3796–3802.CrossRefGoogle Scholar
  16. 16.
    Gschneidner, K. A., Bünzli, J.-C. G., & Pecharsky, V. K. (2007). Handbook on the physics and chemistry of rare earths (1st ed. pp. 1–511). North Holland: Elsevier.Google Scholar
  17. 17.
    Bünzli J-C, G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34, 1048.CrossRefGoogle Scholar
  18. 18.
    Dong, H., Sun, L.-D., & Yan, C.-H. (2015). Energy transfer in lanthanide upconversion studies for extended optical applications. Chemical Society Reviews, 44, 1608–1634.CrossRefGoogle Scholar
  19. 19.
    Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283–4374.CrossRefGoogle Scholar
  20. 20.
    Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemical Reviews, 295, 1–45.CrossRefGoogle Scholar
  21. 21.
    Harvey, N. E. (1957). A history of luminescence: From the earliest times until 1900. Google Scholar
  22. 22.
    Khan, L. U., & Khan, Z. U. (2017). Bifunctional nanomaterials: Magnetism, luminescence and multimodal biomedical applications. In Complex magnetic nanostructures (pp. 121–171). Cham: Springer International Publishing.CrossRefGoogle Scholar
  23. 23.
    Khan, L. U. (2015). Optical and magnetic nanomaterials containing Fe3O4 and SiO2 matrices functionalized with calixarene and rare earth complexes. São Paulo: University of Sao Paulo.Google Scholar
  24. 24.
    Lastusaari, M., Laamanen, T., Malkamäki, M., Eskola, K. O., Kotlov, A., Carlson, S., Welter, E., Brito, H. F., Bettinelli, M., Jungner, H., & Hölsä, J. (2012). The bologna stone: History’s first persistent luminescent material. European Journal of Mineralogy, 24, 885–890.CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Virk, H. S. (2014). Luminescence basic concepts, applications and instrumentation. Switzerland: Trans Tech Publications Limited.Google Scholar
  27. 27.
    Kitsinelis, S. (2015). Light sources. Boca Raton: CRC Press Talor & Francis Group.Google Scholar
  28. 28.
    Mottier, P. (2009). LEDs for lightning applications (1st ed.). UK: John Wiley & Sons.Google Scholar
  29. 29.
    Schubert, E. F. (2006). Light-emitting diodes (2nd ed.). UK: Cambridge University Press.Google Scholar
  30. 30.
    Craford, M. G., Shaw, R. W., Herzog, A. H., & Groves, W. O. (1972). Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. Journal of Applied Physics, 43, 4075–4083.CrossRefGoogle Scholar
  31. 31.
    Amano, H., Kito, M., Hiramatsu, K., & Akasaki, I. (1989). P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)\n. Japanese Journal of Applied Physics, 28, L2112–L2114.CrossRefGoogle Scholar
  32. 32.
    Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S. I., Yamada, T., & Mukai, T. (1995). Superbright green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes. Japanese Journal of Applied Physics, 34, L1332.CrossRefGoogle Scholar
  33. 33.
    Atwood, D. A. (2005). The rare earth elements: Fundamentals and applications. Hoboken: Wiley.Google Scholar
  34. 34.
    Voncken, J. H. L. (2016). The rare earth elements. Cham: Springer International Publishing.CrossRefGoogle Scholar
  35. 35.
    Cotton, S. (2005). Chap. 5 Electronic and magnetic properties of the lanthanides. In Lanthanide and actinide chemistry (pp. 61–87). England: John Wiley & Sons, Ltd.Google Scholar
  36. 36.
    Sastri, V. S., Bünzli, J.-C. G., Rao, V. R., Rayudu, V. R., & Perumareddi, J. R. (2003). Modern aspects of rare earths and their complexes (Elsevier B.V).Google Scholar
  37. 37.
    Anon. (1968). J. Galissard de Marignac, P.E. Lecoq de Boisboudran, 1880, 1886 (; Weeks 1968) 1886 1968.
  38. 38.
    Rodrigues, R. V., Marciniak, L., Khan, L. U., Matos, J. R., Brito, H. F., & Stręk, W. (2016). Luminescence investigation of Dy2O2S and Dy2O2SO4 obtained by thermal decomposition of sulfate hydrate. Journal of Rare Earths, 34, 814–819.CrossRefGoogle Scholar
  39. 39.
    Reid, M. F. (2016). Theory of rare-earth electronic structure and spectroscopy. In Handbook on the physics and chemistry of rare earths (Vol. 50, pp. 47–64).CrossRefGoogle Scholar
  40. 40.
    Chen, X., Liu, Y., & Tu, D. (2014). Lanthanide-doped luminescent nanomaterials. Berlin: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  41. 41.
    Khan, L. U., Zambon, L. F. M., Santos, J. L., Rodrigues, R. V., Costa, L. S., Muraca, D., Pirota, K. R., Felinto, M. C. F. C., Malta, O. L., & Brito, H. F. (2018). Red-emitting magnetic nanocomposites assembled from Ag-decorated Fe 3 O 4 @SiO 2 and Y 2 O 3 :Eu 3+ : Impact of iron-oxide/silver nanoparticles on Eu 3+ emission. Chemistry and Selection, 3, 1157–1167.Google Scholar
  42. 42.
    Dorenbos, P. (2002). Light output and energy resolution of Ce3+-doped scintillators. Nuclear Instruments Methods Physics Research Section A Accelerators, Spectrometers, Detectors Associated Equipment, 486, 208–213.CrossRefGoogle Scholar
  43. 43.
    Lakowicz, J. R. (2006). Energy transfer, Principles of Fluorescence Spectroscopy (pp. 443–475). Boston: Springer US.Google Scholar
  44. 44.
    Kalisky, K. (2006). The physics and engineering of solid state lasers. Google Scholar
  45. 45.
    Shrivastava, N., Khan, L. U., Khan, Z. U., Vargas, J., Moscoso-Londoño, O., Ospina, C., Brito, H. F., Javed, Y., Felinto, M. C. F. C., de Menezes, A. S., Knobel, M., & Sharma, S. K. (2017). Building block magneto-luminescent nanomaterials of iron-oxide/ZnS@LaF 3 :Ce 3+ ,Gd 3+ ,Tb 3+ with green emission. Journal of Materials Chemistry C, 5, 2282–2290.CrossRefGoogle Scholar
  46. 46.
    Zabicky, J., & Zabicky, J. (2009). The chemistry of metal enolates, Part 1. Google Scholar
  47. 47.
    Andrews, D. L. (1989). A unified theory of radiative and radiationless molecular energy transfer. Chemical Physics, 135, 195–201.CrossRefGoogle Scholar
  48. 48.
    Bettinelli, M., & Flint, C. D. (1990). Non-resonant energy transfer between Tb 3+ and Eu 3+ in the cubic hexachloroelpasolite crystals Cs 2 NaTb 1-x Eu x Cl 6 (x=0.01-0.15). Journal of Physics Condensed Matter, 2, 8417–8426.CrossRefGoogle Scholar
  49. 49.
    Di Bartolo, B. (1984). Energy transfer processes in condensed matter (Vol. 114). Boston: Springer US.Google Scholar
  50. 50.
    Miyakawa, T., & Dexter, D. L. (1970). Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Physical Review B, 1, 2961–2969.CrossRefGoogle Scholar
  51. 51.
    Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 21, 836–850.CrossRefGoogle Scholar
  52. 52.
    Soules, T. F., & Duke, C. B. (1971). Resonant energy transfer between localized electronic states in a crystal. Physical Review B, 3, 262–274.CrossRefGoogle Scholar
  53. 53.
    Malta, O. L. (2008). Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. Journal of Non-Crystalline Solids, 354, 4770–4776.CrossRefGoogle Scholar
  54. 54.
    Faustino, W. M., Nunes, L. A., Terra, I. A. A., Felinto, M. C. F. C., Brito, H. F., & Malta, O. L. (2013). Measurement and model calculation of the temperature dependence of ligand-to-metal energy transfer rates in lanthanide complexes. Journal Luminescence, 137, 269–273.CrossRefGoogle Scholar
  55. 55.
    Shyichuk, A., Câmara, S. S., Weber, I. T., Carneiro Neto, A. N., Nunes, L. A. O., Lis, S., Longo, R. L., & Malta, O. L. (2016). Energy transfer upconversion dynamics in YVO4:Yb3+,Er3+. Journal of Luminescence, 170, 560–570.CrossRefGoogle Scholar
  56. 56.
    Debasu, M. L., Ananias, D., Rocha, J., Malta, O. L., & Carlos, L. D. (2013). Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals. Physical Chemistry Chemical Physics, 15, 15565–15571.CrossRefGoogle Scholar
  57. 57.
    Shrivastava, N., Khan, L. U., Vargas, J. M., Ospina, C., Coaquira, J. A. Q., Zoppellaro, G., Brito, H. F., Javed, Y., Shukla, D. K., Felinto, M. C. F. C., & Sharma, S. K. (2017). Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: Energy conversion and magnetic behavior. Physical Chemistry Chemical Physics, 19, 18660–18670.CrossRefGoogle Scholar
  58. 58.
    Bloembergen, N. (1959). Solid state infrared quantum counters. Physical Review Letters, 2, 84–85.CrossRefGoogle Scholar
  59. 59.
    Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: Advances and applications. Chemical Reviews, 115, 395–465.CrossRefGoogle Scholar
  60. 60.
    Liu, G. (2015). Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chemical Society Reviews, 44, 1635–1652.CrossRefGoogle Scholar
  61. 61.
    Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114, 5161–5214.CrossRefGoogle Scholar
  62. 62.
    Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., & Liu, X. (2011). Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials, 10, 968–973.CrossRefGoogle Scholar
  63. 63.
    Zheng, W., Huang, P., Tu, D., Ma, E., Zhu, H., & Chen, X. (2015). Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chemical Society Reviews, 44, 1379–1415.CrossRefGoogle Scholar
  64. 64.
    Chivian, J. S., Case, W. E., & Eden, D. D. (1979). The photon avalanche: A new phenomenon in Pr3+−based infrared quantum counters. Applied Physics Letters, 35, 124–125.CrossRefGoogle Scholar
  65. 65.
    Xu, W., Chen, B., Yu, W., Zhu, Y., Liu, T., Xu, S., Min, X., Bai, X., & Song, H. (2012). The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4:Yb3+, Er3+ NPs. Dalton Transactions, 41, 13525.CrossRefGoogle Scholar
  66. 66.
    Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. Berlin: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  67. 67.
    Lakshminarayana, G., Weis, E. M., Lira, A. C., Caldiño, U., Williams, D. J., & Hehlen, M. P. (2013). Cross relaxation in rare-earth-doped oxyfluoride glasses. Journal of Luminescence, 139, 132–142.CrossRefGoogle Scholar
  68. 68.
    Kurzen, H., Bovigny, L., Bulloni, C., & Daul, C. (2013). Electronic structure and magnetic properties of lanthanide 3+ cations. Chemical Physics Letters, 574, 129–132.CrossRefGoogle Scholar
  69. 69.
    Khan, L. U., Muraca, D., Brito, H. F., Moscoso-Londoño, O., Felinto, M. C. F. C., Pirota, K. R., Teotonio, E. E. S., & Malta, O. L. (2016). Optical and magnetic nanocomposites containing Fe3O4@SiO2 grafted with Eu3+ and Tb3+ complexes. Journal of Alloys and Compounds, 686, 453–466.CrossRefGoogle Scholar
  70. 70.
    Malta, O. L., & Carlos, L. D. (2003). Intensities of 4f-4f transitions in glass materials. Quim Nova, 26, 889–895.CrossRefGoogle Scholar
  71. 71.
    Sá Ferreira, R. A., Nobre, S. S., Granadeiro, C. M., Nogueira, H. I. S., Carlos, L. D., & Malta, O. L. (2006). A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 121, 561–567.CrossRefGoogle Scholar
  72. 72.
    Borges, A. S., Dutra, J. D. L., Freire, R. O., Moura, R. T., Da Silva, J. G., Malta, O. L., Araujo, M. H., & Brito, H. F. (2012). Synthesis and characterization of the europium(III) pentakis(picrate) complexes with imidazolium countercations: Structural and photoluminescence study. Inorganic Chemistry, 51, 12867–12878.CrossRefGoogle Scholar
  73. 73.
    Barbosa, H. P., Kai, J., Silva, I. G. N., Rodrigues, L. C. V., Felinto, M. C. F. C., Hölsä, J., Malta, O. L., & Brito, H. F. (2015). Luminescence investigation of R3+-doped alkaline earth tungstates prepared by a soft chemistry method. Journal of Luminescence, 170, 1–7.Google Scholar
  74. 74.
    Lourenço, A. V. S., Kodaira, C. A., Ramos-Sanchez, E. M., Felinto, M. C. F. C., Goto, H., Gidlund, M., Malta, O. L., & Brito, H. F. (2013). Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. Journal of Inorganic Biochemistry, 123, 11–17.CrossRefGoogle Scholar
  75. 75.
    Murakami, S., Herren, M., Rau, D., & Morita, M. (2000). Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K. Inorganica Chimica Acta, 300–302, 1014–1021.CrossRefGoogle Scholar
  76. 76.
    Anon. (2002). Fluorolog ® -3 operational manual (Vol. 2). New Jersey: Horiba Jobin Yvon Inc.Google Scholar
  77. 77.
    Lakowicz, J. R. (2006). In J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy. Boston: Springer US.CrossRefGoogle Scholar
  78. 78.
    Julien, C., & Hirlimann, C. (1980). Ebert-Fastie monochromator alignment. Journal of Physics E, 13, 923–924.CrossRefGoogle Scholar
  79. 79.
    Gaertner, A. A., Yoon, H. W., & Germer, T. A. (2014). Dispersive methods. Experimental Methods in the Physical Science, 46, 68–95.Google Scholar
  80. 80.
    Simon, J. M., Gil, M. A., & Fantino, A. N. (1986). Czerny-turner monochromator: Astigmatism in the classical and in the crossed beam dispositions. Applied Optics, 25, 3715.CrossRefGoogle Scholar
  81. 81.
    Shafer, A. B., Megill, L. R., & Droppleman, L. (1964). Optimization of the Czerny-Turner spectrometer. Journal of the Optical Society of America, 54, 879.CrossRefGoogle Scholar
  82. 82.
    An, Y., Sun, Q., Liu, Y., Li, C., & Wang, Z.-Q. (2013). The design of astigmatism-free crossed czerny-turner spectrometer. Optik – International Journal for Light and Electron Optics, 124, 2539–2543.CrossRefGoogle Scholar
  83. 83.
    Kapusta, P., Wahl, M., & Erdmann, R. (2015). In P. Kapusta, M. Wahl, & R. Erdmann (Eds.), Advanced photon counting (Vol. 15). Cham: Springer International Publishing.Google Scholar
  84. 84.
    Hamamtsu. (2007). Basic principles of photomultiplier tubes. Photomultiplier Tubes Basics Applications, 13–19.Google Scholar
  85. 85.
    Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., & Zhao, Y. (2013). Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Advanced Materials, 25, 3758–3779.CrossRefGoogle Scholar
  86. 86.
    Wang, F., Banerjee, D., Liu, Y., Chen, X., & Liu, X. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 135, 1839–1854.CrossRefGoogle Scholar
  87. 87.
    Dong, H., Du, S. R., Zheng, X. Y., Lyu, G. M., Sun, L. D., Li, L. D., Zhang, P. Z., Zhang, C., & Yan, C. H. (2015). Lanthanide nanoparticles: From design toward bioimaging and therapy. Chemical Reviews, 115, 10725–10815.CrossRefGoogle Scholar
  88. 88.
    Wang, T., Mancuso, J. J., Kazmi, S. M. S., Dwelle, J., Sapozhnikova, V., Willsey, B., Ma, L. L., Qiu, J., Li, X., Dunn, A. K., Johnston, K. P., Feldman, M. D., & Milner, T. E. (2012). Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose. Lasers in Surgery and Medicine, 44, 49–59.CrossRefGoogle Scholar
  89. 89.
    Qiao, R., Qiao, H., Zhang, Y., Wang, Y., Chi, C., Tian, J., Zhang, L., Cao, F., & Gao, M. (2017). Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano acsnano. 6b07842.Google Scholar
  90. 90.
    Wang, H., Zhu, X., Han, R., Wang, X., Yang, L., & Wang, Y. (2017). Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles. Microporous and Mesoporous Materials, 239, 78–85.CrossRefGoogle Scholar
  91. 91.
    Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Thatcher, R. W., & Silbiger, M. L. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13, 343–368.CrossRefGoogle Scholar
  92. 92.
    Key, J., & Leary, J. F. (2014). Nanoparticles for multimodal in vivo imaging in nanomedicine. International Journal of Nanomedicine, 9, 711–726.Google Scholar
  93. 93.
    Kircher, M. F., & Willmann, J. K. (2012). Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology, 263, 633–643.CrossRefGoogle Scholar
  94. 94.
    Xue, Z., Yi, Z., Li, X., Li, Y., Jiang, M., Liu, H., & Zeng, S. (2017). Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials, 115, 90–103.CrossRefGoogle Scholar
  95. 95.
    Jung, J., Kim, M. A., Cho, J. H., Lee, S. J., Yang, I., Cho, J., Kim, S. K., Lee, C., & Park, J. K. (2012). Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T 1-weighted MR and photoluminescence imaging. Biomaterials, 33, 5865–5874.CrossRefGoogle Scholar
  96. 96.
    Ni, D., Zhang, J., Bu, W., Xing, H., Han, F., Xiao, Q., Yao, Z., Chen, F., He, Q., Liu, J., Zhang, S., Fan, W., Zhou, L., Peng, W., & Shi, J. (2014). Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano, 8, 1231–1242.CrossRefGoogle Scholar
  97. 97.
    Li, X., Zhang, X.-N., Li, X.-D., Chang, J., Li, X., Zhang, X.-N., Li, X.-D., & Chang, J. (2016). Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biology and Medicine, 13, 339–348. CrossRefGoogle Scholar
  98. 98.
    Lee, J., Lee, T. S., Ryu, J., Hong, S., Kang, M., Im, K., Kang, J. H., Lim, S. M., Park, S., & Song, R. (2013). RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. Journal of Nuclear Medicine, 54, 96–103.CrossRefGoogle Scholar
  99. 99.
    Liu, Q., Chen, M., Sun, Y., Chen, G., Yang, T., Gao, Y., Zhang, X., & Li, F. (2011). Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials, 32, 8243–8253.CrossRefGoogle Scholar
  100. 100.
    Union, I., Pure, O. F., & Chemistry, A. (1991). Commission on radiochemistry and nuclear techniques * radiolabeling of monoclonal. Radiolabeling of Monoclonal Antibodies with Metal Chelates w : m : m : m : m : m : m, 63, 427–463.Google Scholar
  101. 101.
    Misri, R., Saatchi, K., & Häfeli, U. O. (2012). Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine (London, England), 7, 719–733.CrossRefGoogle Scholar
  102. 102.
    Yang, Y., Sun, Y., Cao, T., Peng, J., Liu, Y., Wu, Y., Feng, W., Zhang, Y., & Li, F. (2013). Hydrothermal synthesis of NaLuF 4: 153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials, 34, 774–783.CrossRefGoogle Scholar
  103. 103.
    Yu, S.-B., & Watson, A. D. (1999). Metal-based X-ray contrast media. Chemical Reviews, 99, 2353–2378.CrossRefGoogle Scholar
  104. 104.
    Zhu, J., Lu, Y., Li, Y., Jiang, J., Cheng, L., Liu, Z., Guo, L., Pan, Y., & Gu, H. (2014). Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale, 6, 199–202.CrossRefGoogle Scholar
  105. 105.
    Li, F., Li, C., Liu, J., Liu, X., Zhao, L., Bai, T., Yuan, Q., Kong, X., Han, Y., Shi, Z., & Feng, S. (2013). Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. Nanoscale, 5, 6950–6959.CrossRefGoogle Scholar
  106. 106.
    Li, X., Yi, Z., Xue, Z., Zeng, S., & Liu, H. (2017). Multifunctional BaYbF 5 : Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Materials Science and Engineering: C, 75, 510–516.CrossRefGoogle Scholar
  107. 107.
    Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1, 602–631.CrossRefGoogle Scholar
  108. 108.
    Prodi, L., Rampazzo, E., Rastrelli, F., Speghini, A., & Zaccheroni, N. (2015). Imaging agents based on lanthanide doped nanoparticles. Chemical Society Reviews, 44, 4922–4952.CrossRefGoogle Scholar
  109. 109.
    Theerthagiri, J., Senthil, R. A., Thirumalai, D., & Madhavan, J. (2015). Handbook of ultrasonics and sonochemistry (pp. 1–29).Google Scholar
  110. 110.
    Sheng, Y., Liao, L.-D., Thakor, N., & Tan, M. C. (2014). Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging. Scientific Reports, 4, 6562.CrossRefGoogle Scholar
  111. 111.
    Sheng, Y., De Liao, L., Bandla, A., Liu, Y. H., Yuan, J., Thakor, N., & Tan, M. C. (2017). Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles. Materials Science and Engineering: C, 70, 340–346.CrossRefGoogle Scholar
  112. 112.
    Maji, S. K., Sreejith, S., Joseph, J., Lin, M., He, T., Tong, Y., Sun, H., Yu, S. W. K., & Zhao, Y. (2014). Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Advanced Materials, 26, 5633–5638.CrossRefGoogle Scholar
  113. 113.
    Nakamura, S., & Stephen Pearton, G. F. (2013). The blue laser diode. The complete story. Springer Science Business Media, 12, 755–756.Google Scholar
  114. 114.
    George, N. C., Denault, K. A., & Seshadri, R. (2013). Phosphors for solid-state white lighting. Annual Review of Materials Research, 43, 481–501.CrossRefGoogle Scholar
  115. 115.
    Ku, A. Y., Setlur, A. A., & Loudis, J. (2015). Impact of light emitting diode adoption on rare earth element use in lighting: Implications for yttrium, europium, and terbium demand. Electrochemical Society Interface, 24, 45–49.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brazilian Nanotechnology National Laboratory (LNNano)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  2. 2.Department of Immunology, Institute of Biomedical sciences-IV (ICB-IV)University of São PauloSão PauloBrazil

Personalised recommendations