Neutron Diffraction: A tool for the Magnetic Properties

  • Pablo Leite BernardoEmail author
  • Helio Salim de Amorim


We start this chapter with an introduction of basic information of nuclear scattering, elastic neutron scattering by polycrystals, magnetic scattering, and some applications of neutrons. In the main part, it has the basic information for determining magnetic structures of any compound through analysis from neutron powder diffraction data. As an example, we will analyze the data collected for the double perovskite Sr2YRuO6 at variable step in scattering angle 2θ in the D1B instrument/Institut Laue-Langevin (ILL). We collected one pattern in the paramagnetic state (40 K), and we refined the crystal structure using a PCR file. Another pattern, in the magnetic state (1.6 K), was collected in order to observe the magnetic peaks. To analyze the data, we used the FullProf Suite program and other subprograms as WinPLOTR-2006 to select the peaks, K_Search to determine the propagation vector K, and BasIreps to obtain the magnetic structure symmetry of the compound in coefficients of the basis functions and in Cartesian or spherical components. We used the FullProf Studio for visualizing crystal and magnetic structures. Furthermore, we show how to use the Le Bail method to check the propagation vector calculated. For determining the magnetic structure of a material, required from the reader is the minimal experience with crystallography and structure refinement using X-ray powder diffraction and/or neutron diffraction through Rietveld analysis.



This research was supported by the Brazilian agencies CNPq and CAPES. Research at Institut Laue-Langevin, D1B (CRG) – High resolution neutron two-axis powder diffractometer – was sponsored by the Scientific User Facilities Division, European scientific research organizations. We would like to thank Dr. Claire Colin (ILL) for the assistance with NPD measurements and Dr. John Neumeier (MSU–USA), Dr. Luis Ghivelder, and Dr. Sergio Garcia (UFRJ–Brazil) for the assistance with sample synthesis.


  1. 1.
    Izyumov, Y. A., Naish, V. E., & Ozerov, R. P. (1981). Neutron difraction of magnetic materials. Moscow: Atomizdat (New York: Consultants Bureau, 1991. Google Scholar).Google Scholar
  2. 2.
    Elsasser, W. M. (1936). Comptes rendus. Academy of Science of Paris, 202, 1029–1030.Google Scholar
  3. 3.
    von Halban, H., Jr., & Preiswerk, P. (1936). Comptes rendus. Academy of Science of Paris, 203, 73.Google Scholar
  4. 4.
    Mitchell, D. P., & Powers, P. N. (1936). Bragg reflection of slow neutrons. Physical Review, 50(5), 486.CrossRefGoogle Scholar
  5. 5.
    Squires, G. L. (1996). Introduction to the theory of thermal neutron scattering. Mineola: Dover Publications.Google Scholar
  6. 6.
    Merzbacher, E. (1970). Quantum mechanics (2nd ed.). New York: Wiley.Google Scholar
  7. 7.
    Koester, L., Rauch, H., & Seymann, E. (1991). Neutron scattering lengths: A survey of experimental data and methods. Atomic Data and Nuclear Data Tables, 49(1), 65–120.CrossRefGoogle Scholar
  8. 8.
    Zamyatnin, Y. S., & Konovalov, V. Y. (2000). Probability of nuclear fisson and effective fisson cross sections. In Y. A. Alexandrov (Ed.), Low energy neutrons and their interaction with nuclei and matter (Part 1, pp. 1–49). Berlin: Springer.Google Scholar
  9. 9.
    Schwartz, L. H., & Cohen, J. B. (1977). Diffraction from materials. New York: Academic.Google Scholar
  10. 10.
    Edward Prince and Arthur James Cochran Wilson. International tables for crystallography. 2004.Google Scholar
  11. 11.
  12. 12.
    Rodriguez-Carvajal T. Roisnel. (2006). Fullprof suite. Google Scholar
  13. 13.
    Juan Rodríguez-Carvajal. (2014). Tutorial on magnetic structure determination and refinement using neutron powder diffraction and fullprof. Google Scholar
  14. 14.
    Ressouche, E. (2014). Reminder: Magnetic structures description and determination by neutron difraction. École thématique de la Société Française de la Neutronique, 13, 02001.CrossRefGoogle Scholar
  15. 15.
    Le Bail, A. (1988). H Duroy, and JL Fourquet. Ab-initio structure determination of LiSbWO6 by x-ray powder diffraction. Materials Research Bulletin, 23(3), 447–452.CrossRefGoogle Scholar
  16. 16.
    Bernardo, P. L., Ghivelder, L., Eslava, G. G., Amorim, H. S., Sinnecker, E. H. C., Felner, I., Neumeier, J. J., & García, S. (2012). Magnetic and thermal responses triggered by structural changes in the double perovskite Sr2YRuO6. Journal of Physics: Condensed Matter, 24(48), 486001.Google Scholar
  17. 17.
    Bernardo, P. L., Ghivelder, L., Amorim, H. S., Neumeier, J. J., & García, S. (2015). Magnetic structure driven by monoclinic distortions in the double perovskite Sr2YRuO6. New Journal of Physics, 17(10), 103007.CrossRefGoogle Scholar
  18. 18.
    Bernardo, P. L., Ghivelder, L., Eslava, G. G., Amorim, H. S., Felner, I., & Garcia, S. (2014). Monoclinic distortion and magnetic coupling in the double perovskite Sr2-xCax/RuO6. Journal of Solid State Chemistry, 220, 270–276.CrossRefGoogle Scholar
  19. 19.
    Ravi, P. (2008). Singh and CV Tomy. Anomalous magnetic properties of Sr2YRuO6. Physical Review B, 78(2), 024432.Google Scholar
  20. 20.
    Chatterji, T. (2005). Neutron scattering from magnetic materials. Gulf Professional Publishing.Google Scholar
  21. 21.
    Rodriguez-Carvajal, J. (2013). How to work with symmetry modes using fullprof and amplimodes. two simple examples: CaTiO3 and LaMnO3
  22. 22.
  23. 23.
    Parkinson, N. G., Hatton, P. D., Howard, J. A. K., Ritter, C., Chien, F. Z, & Wu, M.-K. (2003). Crystal and magnetic structures of A2YRu1−xCuxO6 with A = SR, BA and x = 0.05 to 0.15. Journal of Materials Chemistry, 13(6), 1468–1474.CrossRefGoogle Scholar
  24. 24.
    Bernardo, P. L. (2013). Structural, magnetic and thermal proprieties of doble perovskites with Ru. Dissetation, Instituto de Física – Universidade Federal do Rio de Janeiro. Brazil.Google Scholar
  25. 25.
  26. 26.
    Christopher, S., Knee, & Weller, M. T. (2004). Neutron diffraction study of crystal structure and antiferromagnetic order in Sr2CoO2X2 (X = Cl, Br). Physical Review B, 70(14), 144406.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pablo Leite Bernardo
    • 1
    Email author
  • Helio Salim de Amorim
    • 2
  1. 1.Centro Brasileiro de Pesquisas Fìsicas (CBPF)Rio de JaneiroBrazil
  2. 2.Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations