Skip to main content

Manufacturing/In-Service Uncertainty and Impact on Life and Performance of Gas Turbines/Aircraft Engines

  • Chapter
  • First Online:
  • 1503 Accesses

Abstract

This chapter highlights the impact of manufacturing errors on performances of aircraft engines and gas turbines in general. The reader should use this chapter to identify the regions where uncertainty quantification (UQ) should be used to improve the reliability of a gas turbine design and define where this matters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paniagua, G., Dénos, R., & Almeida, S. (2004). Effect of the hub endwall cavity flow on the flow-field of a transonic high-pressure turbine. Journal of Turbomachinery, 126(4), 578–586.

    Article  Google Scholar 

  2. Dudgeon, E. H. (1994). AGARD, AGARD-AR-320.

    Google Scholar 

  3. Schnell, R., Lengyel-Kampmann, T., & Nicke, E. (2014). On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics. Journal of Turbomachinery, 136 pp. 091005-1.

    Article  Google Scholar 

  4. Ghenaiet, A. (2012). Study of sand particle trajectories and erosion into the first compression stage of a turbofan. Journal of Turbomachinery, 134(5).

    Article  Google Scholar 

  5. Tabakoff, W. (1986). Study of single stage axial flow compressor performance deterioration. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 37, 95–100.

    Google Scholar 

  6. Balan, C., & Tabakoff, W. (1984). Axial flow compressor performance deterioration. AIAA Paper.

    Google Scholar 

  7. Ghenaiet, A., Tan, S. C., & Elder, R. L. (2005). Prediction of an axial turbomachine performance degradation due to sand ingestion. In Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219(4), 273–287.

    Google Scholar 

  8. Klinner, J., Hergt, A., & Willert, C. (2014). Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil. Experiments in Fluids, 55(9).

    Google Scholar 

  9. Zamboni, G., & Xu, L. (2012). Fan root aerodynamics for large bypass gas turbine engines: influence on the engine performance and 3D design. ASME. Journal of Turbomachinery, 134(6), 061017-061017-11. https://doi.org/10.1115/1.4006286.

    Article  Google Scholar 

  10. Schnell, R. R., Lengyel-Kampmann, T. T., & Nicke, E. E. (2014). On the variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics. ASME. Journal of Turbomachinery, 136(9), 091005-091005-14. https://doi.org/10.1115/1.4027218.

    Article  Google Scholar 

  11. Li, L., Yu, X., & Wang, P. Research on aerodynamic damping of bladed disk with random mistuning, GT2017-63877.

    Google Scholar 

  12. Franz, D., Salles, L., & Stapelfeldt, S. Analysis of a turbine bladed disk with structural and aerodynamic mistuning, GT2017-64586.

    Google Scholar 

  13. Ferrar, A. M., Schneck III, W. C., & O’Brien, W. F. Leveraging correlation to reduce uncertainty in efficiency measurements for low pressure ratio fans, GT2016–57718.

    Google Scholar 

  14. Giebmanns, A., Backhaus, J., & Frey, C. (2013). Compressor leading edge sensitivities and analysis with an adjoint flow solver. In Proceedings of the ASME Turbo Expo (6 A).

    Google Scholar 

  15. Giebmanns, A., Schnell, R., & Steinert, W. (2012). Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements. In Proceedings of the ASME Turbo Expo, 8, 279–288.

    Google Scholar 

  16. Goodhand, M. N., Miller, R. J., & Lung, H. W. (2012). The sensitivity of 2D compressor incidence range to in-service geometric variation. In Proceedings of the ASME Turbo Expo, 8, 159–170.

    Google Scholar 

  17. Goodhand, M. N., & Miller, R. J. (2011). Compressor leading edge spikes: a new performance criterion. Journal of Turbomachinery, 133(2).

    Article  Google Scholar 

  18. Elmstrom, M. E., Millsaps, K. T., Hobson, G. V. (2011). Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils. Journal of Turbomachinery, 133(4).

    Article  Google Scholar 

  19. Wheeler, A. P. S., Sofia, A., & Miller, R. J. (2009). The effect of leading-edge geometry on wake interactions in compressors. Journal of Turbomachinery, 131(4), 1–8.

    Article  Google Scholar 

  20. Lamb, C. T., & Darmofal, D. L. (2004). Performance-based geometric tolerancing of compressor blades. In Proceedings of the ASME Turbo Expo 2004 (5 A, pp. 203–210).

    Google Scholar 

  21. Garzon, V. E., & Darmofal, D. L. (2004). On the aerodynamic design of compressor airfoils for robustness under geometric uncertainty. In Proceedings of the ASME Turbo Expo 2004 (5 A, pp. 191–202).

    Google Scholar 

  22. Caguiat, D. E. (2003). Rolls Royce/Allison 501-K gas turbine antifouling compressor coatings evaluation. Journal of Turbomachinery, 125(3), 482–488.

    Article  Google Scholar 

  23. Sakulkaew, S., Tan, C. S., & Donahoo, E. (2013). Compressor efficiency variation with rotor tip gap from vanishing to large clearance. Journal of Turbomachinery, 135(3).

    Article  Google Scholar 

  24. Freeman, C. (1985). Tip Clearance Effects in Axial Turbomachines. Von Karman Institute Lecture Series 1985-05.

    Google Scholar 

  25. Suder, K. L., Chima, R. V., & Strazisar, A. J. (1995). The effect of adding roughness and thickness to a transonic axial compressor rotor. Transactions—ASME: Journal of Turbomachinery, 117(4), 491–505.

    Article  Google Scholar 

  26. Gbadebo, S. A., Hynes, T. P., & Cumpsty, N. A. (2004). Influence of surface roughness on three-dimensional separation in axial compressors. In Proceedings of the ASME Turbo Expo 2004 (5 A, pp. 471–481).

    Google Scholar 

  27. Syverud, E., Brekke, O., & Bakken, L. E. (2007). Axial compressor deterioration caused by saltwater ingestion. Journal of Turbomachinery, 129(1), 119–126.

    Article  Google Scholar 

  28. Morini, M., Pinelli, M., & Spina, P. R. (2010). Computational fluid dynamics simulation of fouling on axial compressor stages. Journal of Engineering for Gas Turbines and Power, 132(7).

    Article  Google Scholar 

  29. Curlett, B. P. (1991). The aerodynamic effect of fillet radius in a low speed compressor cascade. NASA Technical Memorandum, 105347.

    Google Scholar 

  30. Gupta, K. K., Rehman, A., & Sarviya, R. M. (2010). Bio-fuels for the gas turbine: a review. Renewable and Sustainable Energy Reviews, 14, 2946–2955.

    Article  Google Scholar 

  31. Gupta, K. K., Rehman, A., & Sarviya, R. M. (2010). Evaluation of soya bio-diesel as a gas turbine fuel. Iranica Journal of Energy & Environment, 1(3), 205–210.

    Google Scholar 

  32. Juste López, G., & Salva Monfort, J. J. (2000). Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass and Bioenergy, 19, 119–128.

    Article  Google Scholar 

  33. Pucher, G., Allan, W., LaViolette, M., & Poitras, P. (2011). Emissions from a gas turbine sector rig operated with synthetic aviation and biodiesel fuel. ASME Journal of Engineering for Gas Turbines and Power, 133(11), p. 111502.

    Article  Google Scholar 

  34. Speight, J. G. (2008). Synthetic fuels handbook–properties, process and performance. McGraw-Hill, New York, Chap. 1 and 7.

    Google Scholar 

  35. Corporan, E., DeWitt, M., Belovich, V., Pawlik, R., Lynch, A., Gord, J., et al. (2007). Emissions characteristics of a turbine engine and research combustor burning a fischer-tropsch jet fuel. Energy & Fuels, 21, 2615–2626.

    Article  Google Scholar 

  36. Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007) Power generation using fast pyrolysis liquids from biomass. Renewable & Sustainable Energy Reviews, 1056–1086.

    Article  Google Scholar 

  37. Snyder, W. E., Wright M. R., & Dexter S. G. (1988). A natural gas engine combustion rig with high-speed photography. Journal of Engineering for Gas Turbines and Power, 110(3), 334–342.

    Article  Google Scholar 

  38. Braun-Unkhoff, M., Riebl, S., & Riedel, U. A study on the emissions of alternative aviation fuels, GT2016-57361.

    Google Scholar 

  39. Makwana, A., Linevsky, M., Iyer, S., Santoro, R., Litzinger, T., & O’Connor, J. Effects of fuel molecular weight on emissions in a jet flame and a model gas turbine combustor, GT2017-63686.

    Google Scholar 

  40. Kraus, C., Selle, L., Poinsot, T., Arndt, C. M., & Bockhorn, H. Influence of heat transfer and material temperature on combustion instabilities in a swirl burner, GT2016-56368.

    Google Scholar 

  41. Salvadori, S., Montomoli, F., & Martelli, F. (2011). Aerothermal study of the unsteady flow field in a transonic gas turbine with inlet temperature distortions. Journal of Turbomachinery, 133(3).

    Article  Google Scholar 

  42. Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty in turbomachinery: tip gap and fillet radius. Computers & Fluids, 46(1), 362–368.

    Article  Google Scholar 

  43. Massini, M., Miller, R. J., & Hodson, H. P. (2011). A new intermittent aspirated probe for the measurement of stagnation quantities in high temperature gases. Journal of Turbomachinery, 133(4).

    Article  Google Scholar 

  44. Ames, F. E., & Moffat, R. J. (1990). Effects of simulated combustor turbulence on boundary layer heat transfer. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 138, 11–17.

    Google Scholar 

  45. Krishnamoorthy, V., Pai, B. R., & Sukhatme, S. P. (1988). Influence of upstream flow conditions on the heat transfer to nozzle guide vanes. Journal of Turbomachinery, 110(3), 412–416.

    Article  Google Scholar 

  46. Krishnamoorthy, V., & Sukhatme, S. P. (1989). Effect of free-stream turbulence on gas turbine blade heat transfer. Journal of Turbomachinery, 111(4), 497–501.

    Article  Google Scholar 

  47. Mehendale, A. B., Ekkad, S. V., & Han, J. C., (1994). Mainstream turbulence effect on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO2 film injection. International Journal of Heat and Mass Transfer, 37(17), 2707–2714.

    Article  Google Scholar 

  48. Hall, B. F., Chana, K. S., & Povey, T. (2014). Design of a nonreacting combustor simulator with swirl and temperature distortion with experimental validation. Journal of Engineering for Gas Turbines and Power, 136(8).

    Article  Google Scholar 

  49. Salvadori, S., Riccio, G., & Insinna, M. (2012). Analysis of combustor/vane interaction with decoupled and loosely coupled approaches. In Proceedings of the ASME Turbo Expo (8, pp. 2641–2652).

    Google Scholar 

  50. Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 131(4), 1–11.

    Article  Google Scholar 

  51. Moeckel, C. W., Darmofal, D. L., & Kingston, T. R. (2007). Toleranced designs of cooled turbine blades through probabilistic thermal analysis of manufacturing variability. In Proceedings of the ASME Turbo Expo, 5, 1179–1191.

    Google Scholar 

  52. Sundaram, N., & Thole, K. A. (2007). Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling. Journal of Turbomachinery, 129(3), 599–607.

    Article  Google Scholar 

  53. Bohn, D., & Krewinkel, R. (2006). The effects of unintentional deviations due to manufacturing of cooling holes and operation on transpiration cooling efficiency. In Proceedings of the ASME Turbo Expo (3 PART A, pp. 689–699).

    Google Scholar 

  54. Jovanovic, M. B., de Lange, H. C., & van Steenhoven, A. A. (2008). Effect of hole imperfection on adiabatic film cooling effectiveness. International Journal of Heat and Fluid Flow, 29(2), 377–386.

    Article  Google Scholar 

  55. Jovanovic, M. B., de Lange, H. C., & van Steenhoven, A. A. (2006). Influence of hole imperfection on jet cross flow interaction. International Journal of Heat and Fluid Flow, 27(1), 42–53.

    Article  Google Scholar 

  56. Jovanovic, M. B., De Lange, H. C., & Van Steenhoven, A. A. (2005). Influence of laser drilling imperfection on film cooling performances. In Proceedings of the ASME Turbo Expo (3 PART A, pp. 285–292).

    Google Scholar 

  57. Saumweber, C., & Schulz, A. (2012). Effect of geometry variations on the cooling performance of fan-shaped cooling holes. Journal of Turbomachinery, 134(6).

    Article  Google Scholar 

  58. Larson, F. R., & Miller, J. (). A time temperature relationship for rupture and creep stresses. Transactions of ASME (74, 74 pp. 765 − 775).

    Google Scholar 

  59. Stimpson, C. K., Snyder, J. C., Thole, K. A., & Mongillo, D. Effectiveness measurements of additively manufactured film cooling holes, GT2017-64903.

    Google Scholar 

  60. Glasenapp, T., Puetz, F., Schulz, A., & Bauer, H.-J. Assessment of real turbine blade roughness parameters for the design of a film cooling test rig, GT2017-63088.

    Google Scholar 

  61. Casari, N., Pinelli, M., Suman, A., di Mare, L., & Montomoli, F. EBFOG: Deposition, erosion and detachment on high pressure turbine vanes, GT2017-64526.

    Google Scholar 

  62. Kapsis, M., & He, L. Analysis of aerothermal characteristics of surface micro-structures, GT2017-63582.

    Google Scholar 

  63. Stimpson, C. K., Snyder, J. C., Thole, K. A., & Mongillo, D. Effectiveness measurements of additively manufactured film cooling holes, GT2017-64903.

    Google Scholar 

  64. Stimpson, C. K., Snyder, J. C., Thole, K. A., & Mongillo, D. Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels, Paper: GT2016-58093.

    Google Scholar 

  65. Shi, W., Li, W., Shi, B., Li, X., Ren, J., & Jiang, H. Uncertainty quantification of conjugate heat transfer of a cooled turbine vane: Roughness effect, GT2017-63837.

    Google Scholar 

  66. Vázquez, R., & Torre, D. (2013). The effect of surface roughness on efficiency of low pressure turbines. In Proceedings of the ASME Turbo Expo (6 A).

    Google Scholar 

  67. Hourmouziadis, J. (1989). Aerodynamic design of low pressure turbines (pp. 8.1–8.40). AGARD Lecture Series.

    Google Scholar 

  68. Montomoli, F., Hodson, H., & Haselbach, F. (2010). Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. Journal of Turbomachinery, 132(3).

    Article  Google Scholar 

  69. Antinori, G., Duddeck, F., & Fischersworring-Bunk, A. (2014). Robust design and optimization of a jet engine low pressure turbine rotor. In Second International Conference on vulnerability and risk analysis and management (ICVRAM).

    Google Scholar 

  70. Kellersmann, A., Weiler, S., Bode, C., Friedrichs, J., Ramm, G., & Stading, J. Surface roughness impact on low-pressure turbine performance due to operational deterioration, GT2017-64180.

    Google Scholar 

  71. Zhou, C., Hodson, H., & Himmel, C. (2013). The effects of trailing edge thickness on the losses of ultra-high lift LP turbine blades. In Proceedings of the ASME turbo expo, 6 A.

    Google Scholar 

  72. Torre, D., Vázquez, R., Armañanzas, L. (2013). The effect of airfoil thickness on the efficiency of low-pressure turbines. Journal of Turbomachinery, 136(5).

    Article  Google Scholar 

  73. Wilkes, J. C., Wade, J., Rimpel, A., Moore, J., Swanson, E., Grieco, J., et al. Impact of bearing clearance on measured stiffness and damping coefficients and thermal performance of a high-stiffness generation 3 foil journal bearing, GT2016-56478.

    Google Scholar 

  74. Chatterton, S., Dang, P. V., Pennacchi, P., & Vania, A. Filippo cangioli behavior of tilting-pad journal bearings with large machining error on pads, GT2016–56674.

    Google Scholar 

  75. Hee, J. L., Santhosh, R., Simmons, K., Johnson, G., & Hann, D. Michael walsh oil film thickness measurements on surfaces close to an aero-engine ball bearing using optical techniques, GT2017-63813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Massini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massini, M., Montomoli, F. (2019). Manufacturing/In-Service Uncertainty and Impact on Life and Performance of Gas Turbines/Aircraft Engines. In: Montomoli, F. (eds) Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. Springer, Cham. https://doi.org/10.1007/978-3-319-92943-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92943-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92942-2

  • Online ISBN: 978-3-319-92943-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics