Skip to main content

Use of Lignocellulosic Materials in Bio-based Packaging

  • Chapter
  • First Online:
Lignocellulosic Materials and Their Use in Bio-based Packaging

Abstract

This chapter presents the most recent studies on the use of lignocellulosic materials for the development of bio-based packaging materials. It is addressed the incorporation of cellulose and its derivatives, hemicellulose, and lignin in bio-based packaging, and some works where the lignocellulosic materials with few pretreatment are used as filler are also presented. Additionally, it is discussed some bio-based materials extracted from biomass, such as polysaccharides and proteins, but also the chemically synthesized polymers such as polylactic acid (PLA), or obtained through biotechnological routes such as polyhydroxyalkanoates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aadil KR, Prajapati D, Jha H (2016) Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packag Shelf Life 10:25–33

    Article  Google Scholar 

  • Abdul Khalil HPS, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohyd Polym 150:216–226

    Article  CAS  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biot. 85(6):732–743

    Article  CAS  Google Scholar 

  • Albert S, Mittal GS (2002) Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res Int 35(5):445–458

    Article  CAS  Google Scholar 

  • Arık Kibar EA, Us F (2013) Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. J Food Eng 114(1):123–131

    Article  CAS  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014a) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24

    Article  CAS  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014b) PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    Article  CAS  Google Scholar 

  • Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna P (1997) Preparation and properties of thermally moulded and cast lignosulfonates-starch blends. Ind Crop Prod 6(3–4):253–258

    Article  CAS  Google Scholar 

  • Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57

    Article  CAS  Google Scholar 

  • Berezina N, Martelli SM (2014) Bio-based polymers and materials. In: Lin C, Luque R (eds) Renewable resources for biorefineries: RSC (Green chemistry series). Royal Society of Chemistry, London, pp 1–28

    Google Scholar 

  • Berthet M-A, Angellier-Coussy H, Machado D, Hilliou L, Staebler A, Vicente A, Gontard N (2015) Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind Crop Prod 69:110–122

    Article  CAS  Google Scholar 

  • Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97(10):1979–1987

    Article  CAS  Google Scholar 

  • Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119(4):707–713

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohyd Polym 86(4):1549–1557

    Article  CAS  Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J. 15(3):237–248

    Google Scholar 

  • Bucci D, Tavares L, Sell I (2005) PHB packaging for the storage of food products. Polym Test. 24(5):564–571

    Article  CAS  Google Scholar 

  • Cabane E, Keplinger T, Künniger T, Merk V, Burgert I (2016) Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Sci Rep. https://doi.org/10.1038/srep31287

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalheiro JM, Raposo RS, Almeida MCM, Cesário MT, Sevrin C, Grandfils C, Fonseca M (2012) Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira MA, Lima AM, Teixeira JA, Moreira RA, Vicente AA (2009) Suitability of novel galactomannans as edible coatings for tropical fruits. J Food Eng 94(3):372–378

    Article  CAS  Google Scholar 

  • Chen P, Zhang L, Peng S, Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci 101(1):334–341

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602

    Article  CAS  Google Scholar 

  • Corsello FA, Bolla PA, Anbinder PS, Serradell MA, Amalvy JI, Peruzzo PJ (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohyd Polym 156:452–459

    Article  CAS  Google Scholar 

  • Costa MJ, Cerqueira MA, Ruiz HA, Fougnies C, Richel A, Vicente AA, Teixeira JA, Aguedo M (2015) Use of wheat bran arabinoxylans in chitosan-based films: effect on physicochemical properties. Ind Crop Prod 66:305–311

    Article  CAS  Google Scholar 

  • Crouvisier-Urion K, Bodart PR, Winckler P, Raya J, Gougeon RD, Cayot P, Domenek S, Debeaufort F, Karbowiak T (2016) Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustain Chem Eng 4(12):6371–6381

    Article  CAS  Google Scholar 

  • Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142

    Article  PubMed  Google Scholar 

  • Da Cruz Pradella JG, Jenczak JL, Delgado CR, Taciro MK (2012) Carbon source pulsed feeding to attain high yield and high productivity in poly (3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34(6):1003–1007

    Article  CAS  Google Scholar 

  • Dang KTH, Singh Z, Swinny EE (2008) Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. J Agric Food Chem 56(4):1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Huang R, Zhou M, Chen F, Fu Q (2016) Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohyd Polym 154:129–138

    Article  CAS  Google Scholar 

  • Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701

    Article  CAS  Google Scholar 

  • Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  • Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crop Prod. 95:574–582

    Article  CAS  Google Scholar 

  • Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohyd Polym 47(2):125–129

    Article  CAS  Google Scholar 

  • Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280

    Article  CAS  Google Scholar 

  • García M, Ferrero C, Bertola N, Martino M, Zaritzky N (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov Food Sci Emerg 3(4):391–397

    Article  Google Scholar 

  • Garde A, Schmidt A, Jonsson G, Andersen M, Thomsen A, Ahring BK, Kiel P (2000) Agricultural crops and residuals as a basis for polylactate production in Denmark. In: Weber CJ (ed) Proceedings of the Food biopack conference, Copenhagen, pp 45–51

    Google Scholar 

  • Gatenholm P, Bodin A, Gröndahl M, Dammstrom S, Eriksson L (2008) Polymeric film or coating comprising hemicellulose. US Patent 7,427,643 B2, 23 Sept 2008

    Google Scholar 

  • Gaudin S, Lourdin D, Forssell P, Colonna P (2000) Antiplasticisation and oxygen permeability of starch-sorbitol films. Carbohyd Polym 43(1):33–37

    Article  CAS  Google Scholar 

  • Gennadios A, Hanna M, Kurth L (1997) Application of edible coatings on meats, poultry and seafoods: a review. LWT-Food Sci Technol 30(4):337–350

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33(1):229–235

    Article  CAS  Google Scholar 

  • Ghosh I, Jain RK, Glasser WG (1999) Blends of biodegradable thermoplastics with lignin esters. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and materials perspectives. American Chemical Society, Washington, DC, pp 331–350

    Chapter  Google Scholar 

  • Gontard N, Guilbert S (1994) Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Mathlouthi M (ed) Food packaging and preservation. Chapman & Hall, London, pp 159–181

    Chapter  Google Scholar 

  • Gordobil O, Delucis R, Egüés I, Labidi J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crop Prod 72:46–53

    Article  CAS  Google Scholar 

  • Gröndahl M, Bindgard L, Gatenholm P, Hjertberg T (2013) Polymeric film or coating comprising hemicellulose. US Patent 12/527,070, 15 Oct 2013

    Google Scholar 

  • Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromol 5(4):1528–1535

    Article  CAS  Google Scholar 

  • Guilbert S, Gontard N (1995) Edible and biodegradable food packaging. Roy Soc Chem 162(1):159–159

    CAS  Google Scholar 

  • Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  • Hernandez-Izquierdo V, Krochta JM (2008) Thermoplastic processing of proteins for film formation—A review. J Food Sci 73(2):R30–R39

    Article  CAS  PubMed  Google Scholar 

  • Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155

    Article  CAS  Google Scholar 

  • Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohyd Polym 61(3):266–275

    Article  CAS  Google Scholar 

  • Kester J, Fennema O (1986) Edible films and coatings: a review. Food Technol 40(12):47–59

    CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  • Kibar EAA, Us F (2013) Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. J Food Eng 114(1):123–131

    Article  CAS  Google Scholar 

  • Kirwan MJ (2007) Paper and paperboard - Raw materials, processing and properties. In: Kirwan MJ (ed) Paper and paperboard: packaging technology. Blackwell Publishing Ltd., Oxford, pp 1–49

    Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez-Garcia I, Kookos IK, Papanikolaou S, Kwanb TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    Article  CAS  PubMed  Google Scholar 

  • Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34

    Article  CAS  Google Scholar 

  • Krochta JM (2002) Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 1–41

    Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohyd Polym 103:528–537

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475–508

    Article  CAS  Google Scholar 

  • Liimatainen H, Sirviö JA, Kekäläinen K, Hormi O (2015) High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films. Cellulose 22(5):3151–3160

    Article  CAS  Google Scholar 

  • Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  • Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci F 6(3):60–75

    Article  CAS  Google Scholar 

  • López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloid 43:18–24

    Article  CAS  Google Scholar 

  • Ma X, Li R, Zhao X, Ji Q, Xing Y, Sunarso J, Xia Y (2017) Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Compos Part A: Appl Sci 96:155–163

    Article  CAS  Google Scholar 

  • Mahalik NP, Nambiar AN (2010) Trends in food packaging and manufacturing systems and technology. Trends Food Sci Technol 21(3):117–128

    Article  CAS  Google Scholar 

  • Malmir S, Montero B, Rico M, Barral L, Bouza R (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A: Appl Sci 93:41–48

    Article  CAS  Google Scholar 

  • Martelli-Tosi M, Assis OBG, Silva NC, Esposto BS, Martins MA, Tapia-Blácido DR (2017) Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohyd Polym 157:512–520

    Article  CAS  Google Scholar 

  • Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BW, Vicente AA (2012) Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloid. 29(2):280–289

    Article  CAS  Google Scholar 

  • Meriçer Ç, Minelli M, Angelis MGD, Giacinti Baschetti M, Stancampiano A, Laurita R, Gherardi M, Colombo V, Trifol J, Szabo P, Lindström T (2016) Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind Crop Prod 93:235–243

    Article  CAS  Google Scholar 

  • Mikkonen KS, Rita H, Helén H, Talja RA, Hyvönen L, Tenkanen M (2007) Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromol 8(10):3198–3205

    Article  CAS  Google Scholar 

  • Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28(2):90–102

    Article  CAS  Google Scholar 

  • Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, José NM (2015a) Starch-based films plasticized with glycerol and lignin from Piassava fiber reinforced with nanocrystals from Eucalyptus. Mater Today: Proc 2(1):134–140

    Article  Google Scholar 

  • Miranda CS, Ferreira MS, Magalhães MT, Gonçalves APB, Carneiro de Oliveira J, Guimarães DH, José NM (2015b) Effect of the glycerol and lignin extracted from Piassava fiber in cassava and corn starch films. Mater Res 18:260–264

    Article  CAS  Google Scholar 

  • Morris BA (2017) Why multilayer films? In: Morris BA (ed) The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew Publishing, Elsevier, Oxford, pp 3–21

    Chapter  Google Scholar 

  • Myllärinen P, Buleon A, Lahtinen R, Forssell P (2002) The crystallinity of amylose and amylopectin films. Carbohyd Polym 48(1):41–48

    Article  Google Scholar 

  • Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2(1):23

    Article  CAS  Google Scholar 

  • Nisperos-Carriedo MO, Baldwin EA, Shaw PE (1991) Development of an edible coating for extending postharvest life of selected fruits and vegetables. J Am Soc Hortic Sci 107:57–60

    Google Scholar 

  • Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2012) Role of lignosulphonate in properties of fish gelatin films. Food Hydrocolloid 27(1):60–71

    Article  CAS  Google Scholar 

  • Oinonen P, Krawczyk H, Ek M, Henriksson G, Moriana R (2016) Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties. Carbohyd Polym 136:146–153

    Article  CAS  Google Scholar 

  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423

    Article  CAS  Google Scholar 

  • Olivas GI, Barbosa-Cánovas G (2009) Edible films and coatings for fruits and vegetables. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 211–244

    Chapter  Google Scholar 

  • Pavlath A, Orts W (2009) Edible films and coatings: Why, what, and how? In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 1–23

    Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biot. 82(3):233–247

    Article  CAS  Google Scholar 

  • Pouteau C, Baumberger S, Cathala B, Dole P (2004) Lignin-polymer blends: evaluation of compatibility by image analysis. C R Biol 327(9–10):935–943

    Article  CAS  PubMed  Google Scholar 

  • Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165

    Article  CAS  Google Scholar 

  • Quilaqueo Gutiérrez M, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohyd Polym 87(2):1495–1502

    Article  CAS  Google Scholar 

  • Robertson GL (2013) Paper and paper-based packaging materials. In: Robertson GL (ed) Food packaging: principles and practice. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 167–188

    Google Scholar 

  • Rodríguez M, Osés J, Ziani K, Maté JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39(8):840–846

    Article  CAS  Google Scholar 

  • Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohyd Polym 92(2):2154–2162

    Article  CAS  Google Scholar 

  • Saarikoski E, Rissanen M, Seppälä J (2015) Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming. Carbohyd Polym 119:62–70

    Article  CAS  Google Scholar 

  • Saxena A, Elder TJ, Ragauskas AJ (2011) Moisture barrier properties of xylan composite films. Carbohyd Polym 84(4):1371–1377

    Article  CAS  Google Scholar 

  • Sirvio JA, Liimatainen H, Niinimaki J, Hormi O (2013) Sustainable packaging materials based on wood cellulose. RSC Adv. 3(37):16590–16596

    Article  CAS  Google Scholar 

  • Song J, Kay M, Coles R (2011) Bioplastics. In: Coles R, Kirwan M (eds) Food and beverage packaging technology. Blackwell publishing Ltd., Wiley, London, pp 295–319

    Chapter  Google Scholar 

  • Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50(3):149–155

    Article  Google Scholar 

  • Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos Part B: Eng 69:342–349

    Article  CAS  Google Scholar 

  • Talja R, Poppius-Levlin K (2011) Xylan from wood biorefinery–A novel approach. In: FlexPakRenew workshop: Planet friendly packaging, Lyon France, 10 May 2011

    Google Scholar 

  • Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660

    Article  CAS  Google Scholar 

  • Tong Q, Xiao Q, Lim L-T (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Res Int 41(10):1007–1014

    Article  CAS  Google Scholar 

  • Ustunol Z (2009) Edible films and coatings for meat and poultry. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 245–268

    Chapter  Google Scholar 

  • Wang J, Manley RSJ, Feldman D (1992) Synthetic polymer-lignin copolymers and blends. Prog Polym Sci 17(4):611–646

    Article  CAS  Google Scholar 

  • Wang S, Lee S, Cheng Q (2010) Mechanical properties of cellulosic materials at micro-and nanoscale levels. In: Lejeune A, Deprez T (eds) Cellulose: Structure and properties. Nova Science Publishers, Inc, pp 459–500

    Google Scholar 

  • Weber C, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19(S1):172–177

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: Preparation and characterization. Ind Crop Prod 21(2):185–192

    Article  CAS  Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromol 12(7):2766–2771

    Article  CAS  Google Scholar 

  • Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1987) Kraft lignin in polyurethanes I. Mechanical properties of polyurethanes from a kraft lignin–polyether triol–polymeric MDI system. J Appl Polym Sci 34(3):1187–1198

    Article  CAS  Google Scholar 

  • Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol. 87:22–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballesteros, L.F., Michelin, M., Vicente, A.A., Teixeira, J.A., Cerqueira, M.Â. (2018). Use of Lignocellulosic Materials in Bio-based Packaging. In: Lignocellulosic Materials and Their Use in Bio-based Packaging. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-92940-8_5

Download citation

Publish with us

Policies and ethics