Highlighting Trend-Setters in Educational Platforms by Means of Formal Concept Analysis and Answer Set Programming

  • Sanda Dragoş
  • Diana Şotropa
  • Diana TroancăEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 518)


Web-based educational systems offer unique opportunities to study how students learn and based on the analysis of the users’ behavior, to develop methods to improve the e-learning system. These opportunities are explored, in the current paper, by blending web usage mining techniques with polyadic formal concept analysis and answer set programming. In this research, we consider the problem of investigating browsing behavior by analyzing users’ behavioral patterns on a locally developed e-learning platform, called PULSE. Therefore, we investigate users’ behavior by using similarity measures on various sequences of accessed pages in a tetradic and a pentadic setting. and present an approach for detecting repetitive behavioral patterns in order to determine trend-setters and followers. Furthermore, we prove the effectiveness of combining conceptual scale building with temporal concept analysis in order to investigate life-tracks relative to specific behaviors discovered in online educational platforms.


  1. 1.
    Becker, P., Correia, J.H.: The ToscanaJ suite for implementing conceptual information systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005). Scholar
  2. 2.
    Becker, P., Hereth, J., Stumme, G.: ToscanaJ: An open source tool for qualitative data analysis. In: Duquenne, V., Ganter, B., Liquiere, M., Nguifo, E.M., Stumme, G. (eds.) Proceedings of the Workshop Advances in Formal Concept Analysis for Knowledge Discovery in Databases, FCAKDD 2002, co-located with the European Conference on Artificial Intelligence, ECAI 2002, Lyon, France, pp. 1–2 (2002)Google Scholar
  3. 3.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cerulo, L., Distante, D.: Topic-driven semi-automatic reorganization of online discussion forums: a case study in an e-learning context. In: Global Engineering Education Conference (EDUCON), pp. 303–310. IEEE (2013)Google Scholar
  5. 5.
    Distante, D., Fernandez, A., Cerulo, L., Visaggio, A.: Enhancing online discussion forums with topic-driven content search and assisted posting. In: Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) IC3K 2014. CCIS, vol. 553, pp. 161–180. Springer, Cham (2015). Scholar
  6. 6.
    Dragoş, S., Haliţă, D., Săcărea, C.: Attractors in web based educational systems a conceptual knowledge processing grounded approach. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS (LNAI), vol. 9403, pp. 190–195. Springer, Cham (2015). Scholar
  7. 7.
    Dragoş, S.-M., Haliţă, D.-F., Săcărea, C.: Distilling conceptual structures from weblog data using polyadic FCA. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 151–159. Springer, Cham (2016). Scholar
  8. 8.
    Dragoş, S., Haliţă, D., Săcărea, C., Troancă, D.: Applying triadic FCA in studying web usage behaviors. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS (LNAI), vol. 8793, pp. 73–80. Springer, Cham (2014). Scholar
  9. 9.
    Dragoş, S.-M., Săcărea, C., Şotropa, D.-F.: An investigation of user behavior in educational platforms using temporal concept analysis. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 122–137. Springer, Cham (2017). Scholar
  10. 10.
    Dragos, S.: PULSE - a PHP utility used in laboratories for student evaluation. In: International Conference on Informatics Education Europe II (IEEII), Thessaloniki, Greece, pp. 306–314 (2007)Google Scholar
  11. 11.
    Gan, G., Ma, C., Wu, J.: Data clustering: theory, algorithms, and applications, vol. 20. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). Scholar
  13. 13.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, San Rafael (2012)zbMATHGoogle Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jo, I.H., Park, Y., Kim, J., Song, J.: Analysis of online behavior and prediction of learning performance in blended learning environments. Educ. Technol. Int. 15(2), 71–88 (2014)Google Scholar
  16. 16.
    Kriegel, H.P., Borgwardt, K.M., Kröger, P., Pryakhin, A., Schubert, M., Zimek, A.: Future trends in data mining. Data Min. Knowl. Disc. 15(1), 87–97 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). Scholar
  18. 18.
    Liebowitz, J., Frank, M.: Knowledge management and e-learning. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  19. 19.
    Macfadyen, L.P., Dawson, S.: Numbers are not enough. why e-learning analytics failed to inform an institutional strategic plan. Educ. Technol. Soc. 15(3), 149–163 (2012)Google Scholar
  20. 20.
    Romero, C., Espejo, P.G., Zafra, A., Romero, J.R., Ventura, S.: Web usage mining for predicting final marks of students that use moodle courses. Comput. Appl. Eng. Educ. 21(1), 135–146 (2013)CrossRefGoogle Scholar
  21. 21.
    Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)CrossRefGoogle Scholar
  22. 22.
    Romero, C., Ventura, S.: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. Data Min. Educ. 3(1), 12–27 (2013)Google Scholar
  23. 23.
    Romero, C., Ventura, S., Zafra, A., de Bra, P.: Applying web usage mining for personalizing hyperlinks in web-based adaptive educational systems. Comput. Educ. 53(3), 828–840 (2009)CrossRefGoogle Scholar
  24. 24.
    Rudolph, S., Săcărea, C., Troancă, D.: Membership constraints in formal concept analysis. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, AAAI Press, pp. 3186–3192 (2015)Google Scholar
  25. 25.
    Rudolph, S., Săcărea, C., Troancă, D.: Conceptual navigation for polyadic formal concept analysis. In: Proceedings of the 4th International Workshop on Artificial Intelligence for Knowledge Management AI4KM at IJCAI, pp. 35–41 (2016)Google Scholar
  26. 26.
    Spiliopoulou, M., Faulstich, L.C.: WUM: a tool for web utilization analysis. In: Atzeni, P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 184–203. Springer, Heidelberg (1999). Scholar
  27. 27.
    Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wille R.: Conceptual landscapes of knowledge: a pragmatic paradigm for knowledge processing. In: Gaul W., Locarek-Junge H. (eds.) Classification in the Information Age. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (1999)Google Scholar
  29. 29.
    Wolff, K.E.: Temporal concept analysis. In: ICCS-2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, Stanford University, Palo Alto (CA), pp. 91–107 (2001)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Babeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations