Skip to main content

Photon Energy Up-conversion in Carbon Nanotubes

  • Chapter
  • First Online:
  • 1148 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Single-walled carbon nanotubes (SWNTs) are quasi-one-dimensional nanostructures in which graphene is rolled up in a cylindrical shape. Recently, it has been discovered that SWNTs with defect-induced localized states exhibit an interesting and potentially useful anti-Stokes light-emission phenomenon called up-conversion photoluminescence (UCPL) in the near-infrared wavelength range; SWNTs can efficiently emit the luminescence of a wavelength shorter than the wavelength of the excitation light. Furthermore, recent studies have revealed that the UCPL of SWNTs is enabled by the absorption of ambient thermal energy as the source of the photon energy up-conversion . The discovery of efficient UCPL of SWNTs may lead to new applications, such as UCPL imaging of blood vessels and organs in the deep inside of a living animal’s body with negligible autofluorescence using low-cost near-infrared wavelength excitation light source and conventional silicon-based detectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  3. Ando T (1997) Excitons in carbon nanotubes. J Phys Soc Jpn 66(4):1066–1073

    Article  Google Scholar 

  4. Wang F, Dukovic G, Brus LE, Heinz TF (2005) The optical resonances in carbon nanotubes arise from excitons. Science 308(5723):838–841

    Article  Google Scholar 

  5. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  6. Miyauchi Y (2013) Photoluminescence studies on exciton photophysics in carbon nanotubes. J Mater Chem C 1(40):6499–6521

    Article  Google Scholar 

  7. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773–780

    Article  Google Scholar 

  8. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci USA 108(22):8943–8948

    Article  Google Scholar 

  9. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056

    Article  Google Scholar 

  10. Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, Okamatsu-Ogura Y, Machida K, Ishihara K, Saeki K, Kataura H (2017) Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep 7:44760

    Article  Google Scholar 

  11. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730

    Article  Google Scholar 

  12. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP, Reuel N, Parry NMA, Wogan GN, Strano MS (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873–880

    Article  Google Scholar 

  13. Godin AG, Varela JA, Gao Z, Danné N, Dupuis JP, Lounis B, Groc L, Cognet L (2017) Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat Nanotechnol 12(3):238–243

    Article  Google Scholar 

  14. Stokes GG (1852) On the change of refrangibility of light. Philos Trans R Soc Lond 142:463–562

    Article  Google Scholar 

  15. Auzel F (2004) Up-conversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174

    Article  Google Scholar 

  16. Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G (2006) Up-conversion fluorescence: noncoherent excitation by sunlight. Phys Rev Lett 97(14):143903

    Article  Google Scholar 

  17. Zhao J, Ji S, Guo H (2011) Triplet-triplet annihilation based up-conversion: from triplet sensitizers and triplet acceptors to up-conversion quantum yields. RSC Adv 1(6):937–950

    Article  Google Scholar 

  18. Sheik-Bahae M, Epstein RI (2007) Optical refrigeration. Nat Photonics 1(12):693–699

    Article  Google Scholar 

  19. Rakovich YP, Donegan JF (2008) Anti-stokes photoluminescence in semiconductor nanocrystal quantum dots. In: Rogach AL (ed) Semiconductor nanocrystal quantum dots. Springer, Vienna, pp 257–275. https://doi.org/10.1007/978-3-211-75237-1_9

  20. Murakami Y (2011) Photochemical photon up-converters with ionic liquids. Chem Phys Lett 516(1):56–61

    Article  Google Scholar 

  21. Dou QQ, Guo HC, Ye E (2014) Near-infrared up-conversion nanoparticles for bio-applications. Mater Sci Eng C 45:635–643

    Article  Google Scholar 

  22. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273(5279):1185–1189

    Article  Google Scholar 

  23. He GS, Markowicz PP, Lin T-C, Prasad PN (2002) Observation of stimulated emission by direct three-photon excitation. Nature 415(6873):767–770

    Article  Google Scholar 

  24. Epstein RI, Buchwald MI, Edwards BC, Gosnell TR, Mungan CE (1995) Observation of laser-induced fluorescent cooling of a solid. Nature 377(6549):500–503

    Article  Google Scholar 

  25. Akizuki N, Aota S, Mouri S, Matsuda K, Miyauchi Y (2015) Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun 6:8920

    Article  Google Scholar 

  26. Aota S, Akizuki N, Mouri S, Matsuda K, Miyauchi Y (2016) Up-conversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes. Appl Phys Express 9(4):045103

    Article  Google Scholar 

  27. Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB (2010) Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330(6011):1656–1659

    Article  Google Scholar 

  28. Kilina S, Ramirez J, Tretiak S (2012) Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett 12(5):2306–2312

    Article  Google Scholar 

  29. Miyauchi Y, Iwamura M, Mouri S, Kawazoe T, Ohtsu M, Matsuda K (2013) Brightening of excitons in carbon nanotubes on dimensionality modification. Nat Photonics 7(9):715–719

    Article  Google Scholar 

  30. Piao Y, Meany B, Powell LR, Valley N, Kwon H, Schatz GC, Wang Y (2013) Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 5(10):840–845

    Article  Google Scholar 

  31. Ma X, Adamska L, Yamaguchi H, Yalcin SE, Tretiak S, Doorn SK, Htoon H (2014) Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8(10):10782–10789

    Article  Google Scholar 

  32. Iwamura M, Akizuki N, Miyauchi Y, Mouri S, Shaver J, Gao Z, Cognet L, Lounis B, Matsuda K (2014) Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states. ACS Nano 8(11):11254–11260

    Article  Google Scholar 

  33. Maeda Y, Takehana Y, Yamada M, Suzuki M, Murakami T (2015) Control of the photoluminescence properties of single-walled carbon nanotubes by alkylation and subsequent thermal treatment. Chem Commun 51(70):13462–13465

    Article  Google Scholar 

  34. Shiraishi T, Juhász G, Shiraki T, Akizuki N, Miyauchi Y, Matsuda K, Nakashima N (2016) Determination of precise redox properties of oxygen-doped single-walled carbon nanotubes based on in situ photoluminescence electrochemistry. J Phys Chem C 120(29):15632–15639

    Article  Google Scholar 

  35. Shiraki T, Shiraishi T, Juhász G, Nakashima N (2016) Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design. Sci Rep 6:28393

    Article  Google Scholar 

  36. Maeda Y, Minami S, Takehana Y, Dang J-S, Aota S, Matsuda K, Miyauchi Y, Yamada M, Suzuki M, Zhao R-S, Zhao X, Nagase S (2016) Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization. Nanoscale 8(38):16916–16921

    Article  Google Scholar 

  37. Kim M, Adamska L, Hartmann NF, Kwon H, Liu J, Velizhanin KA, Piao Y, Powell LR, Meany B, Doorn SK, Tretiak S, Wang Y (2016) Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J Phys Chem C 120(20):11268–11276

    Article  Google Scholar 

  38. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350

    Article  Google Scholar 

  39. Endo T, Ishi-Hayase J, Maki H (2015) Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature. Appl Phys Lett 106(11):113106

    Article  Google Scholar 

  40. Jiang M, Kumamoto Y, Ishii A, Yoshida M, Shimada T, Kato YK (2015) Gate-controlled generation of optical pulse trains using individual carbon nanotubes. Nat Commun 6:6335

    Article  Google Scholar 

  41. Ma X, Hartmann NF, BaldwinJon KS, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10(8):671–675

    Article  Google Scholar 

  42. Ishii A, Uda T, Kato YK (2017) Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes. Phys Rev Appl 8(5):054039

    Article  Google Scholar 

  43. Heller DA, Jeng ES, Yeung T-K, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311(5760):508–511

    Article  Google Scholar 

  44. Wei X, Tanaka T, Akizuki N, Miyauchi Y, Matsuda K, Ohfuchi M, Kataura H (2016) Single-chirality separation and optical properties of (5,4) single-wall carbon nanotubes. J Phys Chem C 120(19):10705–10710

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers JP24681031, JP15H05408, JP15K13337, JP16H00911, JP17K19055, by JST PRESTO, by JST CREST (JPMJCR16F3), by the Research Foundation for Opto-Science and Technology, and by the Nakatani Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhei Miyauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyauchi, Y. (2019). Photon Energy Up-conversion in Carbon Nanotubes. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics