Advertisement

The “What” Facet of the Zachman Framework – A Linked Data-Driven Interpretation

  • Alisa Harkai
  • Mihai Cinpoeru
  • Robert Andrei Buchmann
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 316)

Abstract

The recommended interpretation of the “What” facet in the Zachman Framework is that it serves as a data-centric viewpoint on the enterprise, capturing data requirements across several layers of abstraction – from high-level business concepts down to implemented data entities. In enterprise modelling, these have been traditionally approached through well-established practices and modelling techniques – i.e., Entity-Relationship models, UML class models and other types of popular data model types. In the current context of digital transformation and agile enterprise relying on distributed information systems, certain technological specifics are lost when employing traditional methods acting on a high level of abstraction. For example, the Linked Data paradigm advocates specific data distribution, publishing and retrieval techniques that would be useful if assimilated on a modelling level - in what could be characterised as technology-specific modelling methods (mirroring the field of domain-specific languages, but from a technological perspective). This paper proposes an agile modelling language that provides a diagrammatic and, at the same time, machine-readable integration of several of the Zachman Framework facets. In this language, the “What” facet covers concepts met in a Linked Enterprise Data environment – e.g., graph servers, graph databases, RESTful HTTP requests. These have been conceptualised in the proposed language and implemented in a way that allows the generation of a particular kind of code – process-driven orchestration of PHP-based SPARQL client requests.

Keywords

Zachman Framework SPARQL orchestration Resource Description Framework Agile Modelling Method Engineering 

Notes

Acknowledgment

This work is supported by the Romanian National Research Authority through UEFISCDI, under grant agreement PN-III-P2-2.1-PED-2016-1140.

References

  1. 1.
    RDF4J Server REST API. http://docs.rdf4j.org/rest-api
  2. 2.
    Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th Panhellenic Conference on Informatics, pp. 5–10. ACM (2015)Google Scholar
  3. 3.
    RDF - Semantic Web Standards. https://www.w3.org/RDF
  4. 4.
    Zachman, J.A.: Business systems planning and business information control study: a comparison. IBM Syst. J. 21, 31–53 (1982)CrossRefGoogle Scholar
  5. 5.
    Harkai, A., Cinpoeru, M., Buchmann, R.A.: Repurposing Zachman Framework principles for “Enterprise Model”-driven engineering. In: Proceedings of ICEIS 2018, pp. 682–689. SCITEPress (2018).  https://doi.org/10.5220/0006710706820689
  6. 6.
  7. 7.
    EasyRDF Homepage. http://www.easyrdf.org/
  8. 8.
    Smith, B.: Beyond concepts: ontology as reality representation. In: Proceedings of the Third International Conference on Formal Ontology in Information Systems, pp. 73–84. IOS Press (2004)Google Scholar
  9. 9.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum Comput Stud. 5–6, 625–640 (1995)CrossRefGoogle Scholar
  10. 10.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45705-4_19CrossRefGoogle Scholar
  11. 11.
    BOC-Group GmbH, ADOxx platform page – official website. http://www.adoxx.org/live
  12. 12.
    Bork, D.: Using conceptual modelling for designing multi-view modelling tools. In: Proceedings of the 21st Americas Conference on Information Systems. Association for Information Systems (2015)Google Scholar
  13. 13.
    Kingston, J., Macintosh, A.: Knowledge management through multi-perspective modelling: representing and distributing organizational memory. J. Knowl.-Based Syst. 13(2–3), 121–131 (2000)CrossRefGoogle Scholar
  14. 14.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)CrossRefGoogle Scholar
  15. 15.
    Goldman, S., Naegel, R., Preiss, K.: Agile Competitors and Virtual Organizations: Strategies for Enriching the Customer. Wiley, New York (1994)Google Scholar
  16. 16.
    Levy, M., Hazzan, O.: Agile knowledge management. In: Encyclopedia of Information Science and Technology, pp. 112–117. IGI Global (2008)Google Scholar
  17. 17.
    Karagiannis, D., Buchmann, R.: Linked Open Models: Extending Linked Open Data with conceptual model information. Inf. Syst. 56, 174–197 (2016)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    GraphDB Homepage. http://graphdb.ontotext.com
  20. 20.
    Koehler, A., Peyer, F., Salzmann, C., Saner, D.: Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration. Environ. Sci. Technol. 45(8), 3487–3495 (2011)CrossRefGoogle Scholar
  21. 21.
    Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36654-3_6CrossRefGoogle Scholar
  22. 22.
    Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos, J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61292-0_1CrossRefGoogle Scholar
  23. 23.
    Karagiannis, D., Mayr, H.C., Mylopoulos, J.: Domain-Specific Conceptual Modeling. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39417-6CrossRefGoogle Scholar
  24. 24.
    Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific methodology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Challenges and Strategies for Research in Systems Development, pp. 257–269. Wiley, New York (1992)Google Scholar
  25. 25.
    Blackburn, M.R., Denno, P.O.: Using Semantic Web technologies for integrating domain-specific modeling and analytical tools. Procedia Comput. Sci. 61, 141–146 (2015)CrossRefGoogle Scholar
  26. 26.
    Nassar, N., Austin, M.: Model-based systems engineering design and trade-off analysis with RDF graphs. Procedia Comput. Sci. 16, 216–225 (2013)CrossRefGoogle Scholar
  27. 27.
    Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks. Trafford, Bloomington (2003)Google Scholar
  28. 28.
    de Villiers, D.J.: Using the Zachman Framework to assess the rational unified process. In: The Rational Edge, Rational Software (2001)Google Scholar
  29. 29.
    Frankel, D.S., Harmon, P., Mukerji, J., Odell, J., Owen, M., Rivitt, P., Rosen, M., Soley, R.M.: The Zachman Framework and the OMG’s model driven architecture. White paper. Business Process Trends (2003)Google Scholar
  30. 30.
    The Open Group: ADM and the Zachman Framework (2017). http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap39.html
  31. 31.
    Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking data and process perspectives for conformance analysis. Comput. Secur. 73, 172–193 (2018)CrossRefGoogle Scholar
  32. 32.
    Yue, P., Guo, X., Zhang, M., Jiang, L., Zhai, X.: Linked Data and SDI: the case on Web geoprocessing workflows. ISPRS J. Photogramm. Remote Sens. 114, 245–257 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alisa Harkai
    • 1
  • Mihai Cinpoeru
    • 1
  • Robert Andrei Buchmann
    • 1
  1. 1.Faculty of Economics and Business Administration, Business Informatics Research CenterBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations