Skip to main content

Increase Risk of Drought in the Semiarid Lands of Northeast Brazil Due to Regional Warming above 4 °C

  • Chapter
  • First Online:

Abstract

Although semiarid vegetation is usually resistant and highly resilient to water deficits, vegetation activity in semiarid region of Northeast Brazil (NEB) is highly controlled by interannual variations in water availability and decrease in water availability may trigger land degradation and desertification. Recurrent droughts conditions in semiarid regions, such as NEB, can produce a progressive loss of resilience that affects negatively vulnerable populations living from small-scale agriculture. The drought affecting this region continuously during the last 7 years shows an intensity and impact not seen in several decades in the regional economy and society, and represents an example oh what could happen in NEB in the future. In sum, regional warming above 4 °C is likely to increase the drought risk in Northeast Brazil, with increase temperature and decrease precipitation resulting in lower vegetal productivity and more unpredictable harvests. In municipalities, where smallholder livelihoods are not very diversified and are dominated by subsistence agriculture, even a moderate drought (as in 2012–13) can cause a decline in harvests; and, with an increased drought risk (as the future projections), the harvest scenario can still be worse and devastating for regional and national food security and economy. Therefore, there is an urgent need for proactive drought management and preparedness strategies as well as integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4 °C warming for NEB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agência Nacional de Águas ANA. (2017). Boletins Mensais de Monitoramento. Available at: http://www2.ana.gov.br/Paginas/servicos/saladesituacao/boletinsmonitoramento.aspx

    Google Scholar 

  • Alvalá, R. C., Cunha, A. P. M. A., Brito, S. B., Seluchi, M. E., Marengo, J. A., Moraes, O. L. L., et al. (2017). Drought monitoring in the Brazilian semiarid region, In Press, Annais da Academia Brasilieira de Ciencias do Brasil.

    Google Scholar 

  • Araújo, J. (1982). Barragens no Nordeste do Brasil: Experiência do DNOCS em Barragens na Região Semi-Arida. Departamento Nacional de Obras contra as Secas, Ministerio do Interior, pp 15.

    Google Scholar 

  • Assad, E. D., Ribeiro, R. R., & Nakai, A. M. (2018). Agricultural sector. Assessments and how an increase in temperature may have an impact on agriculture in Brazil and mapping of the current and future situation, Chapter 3. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate change risks in Brazil (pp. xx–xx). New York: Springer.

    Google Scholar 

  • Bhuiyan, C. (2008). Desert vegetation during droughts: Response and sensitivity, the international archives of the photogrammetry. Remote Sensing And Spatial Information Sciences, 37, 907–912.

    Google Scholar 

  • Bhuiyan, C., Saha, A. K., Bandyopadhyay, N., & Kogan, F. N. (2017). Analyzing the impact of thermal stress on vegetation health and agricultural drought–a case study from Gujarat, India. GIScience & Remote Sensing, 1–22.

    Article  Google Scholar 

  • Bokusheva, R., Kogan, F., Vitkovskaya, I., Conradt, S., & Batyrbayeva, M. (2016). Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agricultural and Forest Meteorology, 220, 200–206.

    Article  Google Scholar 

  • Brito, S. S. B., Cunha, A. P. M. A., Cunningham, C. C., Alvalá, R. C., Marengo, J. A., & MAraujo. (2017). Frequency, duration and severity of drought in the Brazilian semiarid. International Journal of Climatology, 38, 517. https://doi.org/10.1002/joc.5225

    Article  Google Scholar 

  • Burkett, V. R., et al. (2014). Point of departure. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the IPCC (pp. 169–194). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • CONAB. (2017). Companhia Nacional de Abastecimento. Levantamento de Safras. Available at: http://www.conab.gov.br/conteudos.php?a=1253&t=2. Acessado em março de 2017.

  • Cunha, A. P., Alvalá, R. S., Nobre, C. A., & Carvalho, M. A. (2015). Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 214–215, 494–505.

    Article  Google Scholar 

  • Davenport, M. L., & Nicholson, S. E. (1993). On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. International Journal of Remote Sensing, 14, 2369–2389.

    Article  Google Scholar 

  • Gemenne, F. (2011). Climate-induced population displacements in a 4 o C+ world. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1934), 182–195.

    Article  Google Scholar 

  • Gusso, A., Ducati, J. R., Veronez, M. R., Sommer, V., & Da Silveira Jr., L. G. (2014). Monitoring heat waves and their impacts on summer crop development in southern Brazil. Agricultural Sciences, 5, 353–364. https://doi.org/10.4236/as.2014.54037

    Article  Google Scholar 

  • Gutierrez, A. P. A., Engle, N. L., De Nys, E., Molejon, C., & Martins. (2014). Drought preparedness in Brazil. Weather and Climate Extremes, 95(3), 95–106.

    Article  Google Scholar 

  • Hacon, S. S., de Oliveira, B. F. A., & Silveira. (2018). Health sector: Review of literature on the health sector and impacts of 4 °C or mopre warming, Chapter 4. In C. A. Nobre, J. A. Marengo, & W. R. Spares (Eds.), Climate change risks in Brazil (pp. xx–xx). New York: Springer.

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 data set. International Journal of Climatology, 34, 623–712. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 15, 9643–9684.

    Article  Google Scholar 

  • Hayes, M. J., Svoboda, M. D., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on drought indices — Universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92, 485–488. https://doi.org/10.1175/2010BAMS3103.1

    Article  Google Scholar 

  • Herrmann, S. M., Anyamba, A., & Tucker, C. J. (2005). Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change, 15, 394–404.

    Article  Google Scholar 

  • http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php

  • https://crudata.uea.ac.uk/cru/data/hrg/

  • https://www.esrl.noaa.gov/psd/enso/past_events

  • Ibrahim, Y. Z., Balzter, H., Kaduk, J., & Tucker, C. J. (2015). Land degradation assessment using residual trend analysis of GIMMS NDVI3g soil moisture and rainfall in sub-Saharan West Africa from 1982 to 2012. Remote Sensing, 7, 5471–5494.

    Article  Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change (p. 1535). Cambridge, UK and New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Central and South America. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. Mac Cracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional Aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental panel on climate change (pp. 1499–1566). Cambridge,UK and New York: Cambridge University Press.

    Google Scholar 

  • Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Khudulmur, S. & Tucker C. J. (2017). Comments on the use of the vegetation health index over Mongolia. International Journal of Remote Sensing, in press.

    Google Scholar 

  • Kogan, F. N. (1994). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research., 15, 91–100. https://doi.org/10.1016/0273-1177(95)00079-T

    Article  Google Scholar 

  • Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100.

    Article  Google Scholar 

  • Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78, 621–636.

    Article  Google Scholar 

  • Kogan, F. N. (2000a). Global drought watch from space. Bulletin of the American Meteorological Society, 78, 621–636.

    Article  Google Scholar 

  • Kogan, F. N. (2000b). Satellite-observed sensitivity of world land ecosystems to El Nino/La Nina. Remote Sensing of Environment, 74, 445–462.

    Article  Google Scholar 

  • Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82, 19491964.

    Article  Google Scholar 

  • Kogan, F. N. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. Eos, transactions. American Geophysical Union, 83(48), 562–563.

    Article  Google Scholar 

  • Kogan, F. N., & Guo, W. (2017). Strong 2015-2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing, 38(1), 161–178.

    Article  Google Scholar 

  • Kogan, F. N., et al. (2005). Modelling corn production in China using AVHRR-based vegetation health indices. International Journal of Remote Sensing., 26, 2325–2336.

    Article  Google Scholar 

  • Kussul, N. N., Sokolov, B. V., Zyelyk, Y. I., Zelentsov, V. A., Skakun, S. V., & Shelestov, A. Y. (2010). Disaster risk assessment based on heterogeneous geospatial information. Journal of Automation and Information Sciences, 42(12), 32–45.

    Article  Google Scholar 

  • Lambin, E. F., & Ehrlich, D. (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17(3), 163–487.

    Article  Google Scholar 

  • Liu, J., Wu, J., Wu, Z., & Liu, M. (2013). Response of NDVI dynamics to precipitation in the Beijing–Tianjin sandstorm source region. International Journal of Remote Sensing, 34, 5331–5350.

    Article  Google Scholar 

  • Magalhães, A., & Coauthors. (1988). The effects of climate variations on agriculture in Northeast Brazil. In M. Parry, T. Carter, & N. Konijn (Eds.), The impact of climate variations on agriculture. vol 2. assessments in semiarid regions (pp. 277–304). Amsterdam: Kluwer Academic Publishers.

    Google Scholar 

  • Marengo, J. A., Alves, L. M., Alvalá, R. C., Cunha, A.P., Brito, S.S., & Moraes, O. L. L. (2017). Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region, Anais da Academia Brasileira de Ciências (2017) (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001–3765 / Online version ISSN 1678–2690 http://dx.doi.org/DOI.

  • Marengo, J. A., Torres, R. R., & Alves, L. M. (2016). Drougth in northeast Brasil – Past, presente and future. Theoretical and Applied Climatology, 20, 1–12.

    Google Scholar 

  • Martins, E. S., De Nys, E., Molejon Quintana, C., Biazeto, B., Vieira, R. F., & Engle, N. (2015). Monitor de Secas do Nordeste, em busca de um novo paradigma para a gestão de secas. Série Água, 10.

    Google Scholar 

  • Martins, E. S., Molejon Quintana, C., Dias, S., Vieira RF, M. A. F., Biazeto, B., Foratini, G. D., et al. (2016). The technical and institutional case: The northeast drought monitor as the anchor and facilitator of collaboration, Chapter 3. In N. Engle, E. De Nys, & A. R. Magalhaes (Eds.), Drought in Brazil: Proactive management and policy, Drought and Water Crises (pp. 37–48). Boca Raton, FL: Taylor & Francis., 2016.

    Google Scholar 

  • Martins, E. S., Vieira, R. F., Biazeto, B., & Molejon Quintana, C. (2016). Northeast drought monitor: The process, Chapter 11. In N. Engle, E. De Nys, & A. R. Magalhaes (Eds.), Drought in Brazil: proactive management and policy, Drought and Water Crises (pp. 143–166). Boca Raton, FL: Taylor & Francis., 2016.

    Google Scholar 

  • Martiny, N., Richard, Y., & Camberlin, P. (2005). Interannual persistence effects in vegetation dynamics of semi-arid Africa. Geophysical Research Letters, 32, L24403. https://doi.org/10.1029/2005GL024634

    Article  Google Scholar 

  • McKee, T. B., Doesken., N. J., & Kleist, J. (1993). The relationship of drought frequency and duration of time scales. Eighth conference on applied climatology (pp. 179–186). Anaheim, CA: American Meteorological Society., Jan17–23, 1993.

    Google Scholar 

  • Meinshausen, M., Smith, S. J., Calvin, K., et al. (2011). Climatic Change, 109, 213. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  Google Scholar 

  • Nemani, R. R., & Running, S. W. (1989). Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology, 28, 276–284.

    Article  Google Scholar 

  • Philippon, N., Mougin, E., Jarlan, L., & Frison, P.-L. (2005). Analysis of the linkages between rainfall and land surface conditions in the west African monsoon trough CMAP, ERS-WSC, and NOAA-AVHRR data. Journal of Geophysical Research, 110, D24115. https://doi.org/10.1029/2005JD006394

    Article  Google Scholar 

  • Rodrigues, R. R., & MCphaden, M. J. (2014). Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast? Geophysical Research Letters, 4, 1012–1018.

    Article  Google Scholar 

  • SAF/MDA. (2017). Secretaria Especial de Agricultura Familiar e do Desenvolvimento Agrário. Disponível em: http:// www.mda.gov.br. Acesso em 07 de março de 2017.

  • Scarano, F. (2018). Biodiversity sector: Assessment of the literature of temperature increase in the biodiversity sector and ecosystems, Chapter 5. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate change risks in Brazil (pp. xx–xx). New York: Springer.

    Google Scholar 

  • Schaeffer, R., Lucena, A. F. P., Costa, I., Vazquez, E., Viviescas, C., & Hubak, V. (2018). Energy sector: Climate change and the energy sector in Brazil, Chapter 6. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate change risks in Brazil (pp. xx–xx). New York: Springer.

    Google Scholar 

  • Schlaepfer, D. R., et al. (2017). Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8, 14196. https://doi.org/10.1038/ncomms14196

    Article  Google Scholar 

  • Seiler, R. A., Kogan, F., & Sullivan, J. (1998). AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Advances in Space Research, 21, 481–484.

    Article  Google Scholar 

  • Skakun, S., Kussul, N., Shelestov, A., et al. (2016). The use of satellite data for agriculture drought risk quantification in Ukraine. Geomatics, Natural Hazards and Risk, 7, 901–917.

    Article  Google Scholar 

  • Soares, W. R., Marengo, J. A., & Nobre, C. A. (2018). Assessment of warming projections and probabilities for Brazil, Chapter 2. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate change risks in Brazil (pp. xx–xx). New York: Springer.

    Google Scholar 

  • Unganai, L. S., & Kogan, F. N. (1998). Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sensing of Environment, 63, 219–232.

    Article  Google Scholar 

  • Van Vuuren, D. P. P., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B., van Ruijven, B., et al. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change. https://doi.org/10.1007/s/10584-006-9172-9

  • Van Vurren, D. P., Edmons, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., et al. (2013). The response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 2013(110), 52–57.

    Article  Google Scholar 

  • Vieira, R. M. S. P., Cunha, A. P. M. A., Alvalá, R. C. S., Carvalho, V. C., Ferraz Neto, S., & Sestini, M. F. (2013). Land use and land cover map of a semiarid region of Brazil for meteorological and climatic models. Revista Brasileira de Meteorologia, 28, 129–138.

    Article  Google Scholar 

  • Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13.

    Article  Google Scholar 

  • World Bank. (2012). 4C: Turn down the heat. A report for the World Bank by the Potsdam institute for climate impact research and climate analytics, November 2012, Washington, DC 20433.

    Google Scholar 

  • World Bank. (2013) Turn down the heat: Climate extremes, regional impacts, and the case for resilience. A report for the World Bank by the Potsdam institute for climate impact research and climate analytics. Washington, DC 20433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Marengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marengo, J.A. et al. (2019). Increase Risk of Drought in the Semiarid Lands of Northeast Brazil Due to Regional Warming above 4 °C. In: Nobre, C., Marengo, J., Soares, W. (eds) Climate Change Risks in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-92881-4_7

Download citation

Publish with us

Policies and ethics