QAP Analysis of Company Co-mention Network

  • S. P. Sidorov
  • A. R. FaizlievEmail author
  • V. A. Balash
  • A. A. Gudkov
  • A. Z. Chekmareva
  • M. Levshunov
  • S. V. Mironov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10836)


In our research we form a network called company co-mention network. News analytics data have been employed to collect the companies co-mentioning. Each company acquires a certain value based on the amount of news in which the company was mentioned. A matrix containing the number of co-mentioning news between pairs of companies has been created for network analysis. Each company is presented as a node, and news mentioning two companies establishes a link between them. The network is constructed quite similarly to social networks or co-citation networks. The networked map of the companies is used to visualize the dependence structure of the economy by identifying groups of companies that are more central than others. The analysis carried out in the context of sectors of economy and territorial affiliation made it possible to identify key companies and to explore the similarity of the power law of vertices within sectors. QAP analysis between the co-mention network and the sector affiliation network was carried out to examine the ability of the sector affiliation network to predict the structure of the co-mention network.


Network analysis News analytics Degree distribution SNA metrics QAP analysis 


  1. 1.
    Abbasi, A., Altmann, J.: On the correlation between research performance and social network analysis measures applied to research collaboration networks. In: 44th Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE (2011)Google Scholar
  2. 2.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    An, J., Kwak, H.: What gets media attention and how media attention evolves over time: large-scale empirical evidence from 196 countries. In: Proceedings of the Eleventh International Conference on Web and Social Media, pp. 464–467. The AAAI Press, Palo Alto, Montreal, May 2017Google Scholar
  4. 4.
    Anthonisse, J.M.: The rush in a directed graph. Technical (1971)Google Scholar
  5. 5.
    Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach for analysis and assessment of graph-based and sequential hypotheses. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 231–247. Springer, Cham (2017). Scholar
  6. 6.
    Barnett, G.: A longitudinal analysis of the international telecommunication network, 1978–1996. Am. Behav. Sci. 44, 1638–1655 (2001)CrossRefGoogle Scholar
  7. 7.
    Barnett, G., Danowski, J.: The structure of communication: a network analysis of the international communication association. Hum. Commun. Res. 19(2), 264–285 (1992)CrossRefGoogle Scholar
  8. 8.
    Barnett, G., Salisbury, J.: Communication and globalization: a longitudinal analysis of the international telecommunication network. J. World Syst. Res. 2(16), 1–17 (1996)Google Scholar
  9. 9.
    Basov, N., Lee, J.S., Antoniuk, A.: Social networks and construction of culture: a socio-semantic analysis of art groups. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V. COMPLEX NETWORKS 2016, vol. 693, pp. 785–796. Springer, Cham (2017). Scholar
  10. 10.
    Choi, E., Lee, K.C.: Relationship between social network structure dynamics and innovation: micro-level analyses of virtual cross-functional teams in a multinational B2B firm. Comput. Hum. Behav. 65, 151–162 (2016)CrossRefGoogle Scholar
  11. 11.
    Coletto, M., Garimella, K., Gionis, A., Lucchese, C.: A motif-based approach for identifying controversy. In: Proceedings of the Eleventh International Conference on Web and Social Media, pp. 496–499. The AAAI Press, Palo Alto, Montreal, May 2017Google Scholar
  12. 12.
    Correa, C., Crnovrsanin, T., Ma, K.L.: Visual reasoning about social networks using centrality sensitivity. IEEE Trans. Vis. Comput. Graph. 18(1), 106–120 (2012)CrossRefGoogle Scholar
  13. 13.
    Dekker, D., Krackhardt, D., Snijders, T.A.B.: Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72(4), 563–581 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabási, A.L., Wang, D.: Scaling identity connects human mobility and social interactions. Proc. Nat. Acad. Sci. 113(26), 7047–7052 (2016). Scholar
  15. 15.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78, 1360 (1973)CrossRefGoogle Scholar
  16. 16.
    Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transciptional network. Nat. Genet. 31, 60–63 (2002)CrossRefGoogle Scholar
  17. 17.
    Haishu, Q., Ying, L., Xin, O.: Industrial association, common information spill out and industry stock indexes co-movement. Syst. Eng. Theory Pract. 36(11), 2737 (2016)Google Scholar
  18. 18.
    Hubert, L.: Assignment Methods in Combinatorial Data Analysis. Dekker, New York (1987)zbMATHGoogle Scholar
  19. 19.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  20. 20.
    Kim, H., Barnett, G.A.: Social network analysis using author co-citation data. In: AMCIS 2008 Proceedings, Paper 172, pp. 1–9 (2008)Google Scholar
  21. 21.
    Krackardt, D.: Qap partialling as a test of spuriousness. Soc. Netw. 9(2), 171–186 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)CrossRefGoogle Scholar
  23. 23.
    Le, H., Shafiq, Z., Srinivasan, P.: Scalable news slant measurement using twitter. In: Proceedings of the Eleventh International Conference on Web and Social Media, pp. 584–587. The AAAI Press, Palo Alto, Montreal, May 2017Google Scholar
  24. 24.
    Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)CrossRefGoogle Scholar
  25. 25.
    Liu, B.: Web Data Mining. Springer, Heidelberg (2007). Scholar
  26. 26.
    Liu, X., Bollen, J., Nelson, M.L., de Sompel, V.: Co-authorship networks in the digital library research community. Inf. Process. Manag. 41(6), 1462–1480 (2005)CrossRefGoogle Scholar
  27. 27.
    Mantel, N.: The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2), 209–220 (1967)Google Scholar
  28. 28.
    Mitra, G., Mitra, L. (eds.): The Handbook of News Analytics in Finance. Wiley, Hoboken (2011)Google Scholar
  29. 29.
    Mitra, G., Yu, X. (eds.): Handbook of Sentiment Analysis in Finance (2016)Google Scholar
  30. 30.
    Onnela, J.P., Arbesman, S., Gonzalez, M.C., Barabasi, A.L., Christakis, N.A.: Geographic constraints on social network groups. PLoS ONE 6(4), 1–7 (2011). Scholar
  31. 31.
    Ravasz, R., Barabasi, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)CrossRefGoogle Scholar
  32. 32.
    Ravasz, R., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRefGoogle Scholar
  33. 33.
    Said, Y.H., Wegman, E., Sharabati, W.K., Rigsby, J.: Social networks of author-coauthor relationships. Comput. Stat. Data Anal. 52(4), 2177–2184 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Samoilenko, A., Karimi, F., Edler, D., Kunegis, J., Strohmaier, M.: Linguistic neighbourhoods: explaining cultural borders on wikipedia through multilingual co-editing activity. EPJ Data Sci. 5, 1–20 (2016)CrossRefGoogle Scholar
  35. 35.
    Sidorov, S.P., Faizliev, A.R., Balash, V.A., Gudkov, A.A., Chekmareva, A.Z., Anikin, P.K.: Company co-mention network analysis. Springer Proceedings in Mathematics and Statistics (2018, in press)Google Scholar
  36. 36.
    Sidorov, S., Faizliev, A., Balash, V.: Measuring long-range correlations in news flow intensity time series. Int. J. Mod. Phys. C 28(08), 1750103 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sidorov, S., Faizliev, A., Balash, V.: Scale invariance of news flow intensity time series. Nonlinear Phenom. Complex Syst. 19(4), 368–377 (2016)MathSciNetGoogle Scholar
  38. 38.
    Sidorov, S., Faizliev, A., Balash, V.: Fractality and multifractality analysis of news sentiments time series. IAENG Int. J. Appl. Math. 48(1), 90–97 (2018)Google Scholar
  39. 39.
    Sidorov, S., Faizliev, A., Balash, V., Korobov, E.: Long-range correlation analysis of economic news flow intensity. Phys. A 444, 205–212 (2016)CrossRefGoogle Scholar
  40. 40.
    Sinatra, R., Wang, D., Deville, P., Song, C., Barabási, A.L.: Quantifying the evolution of individual scientific impact. Science 354(6312), aaf5239 (2016). Scholar
  41. 41.
    Tang, J., Zhang, D., Yao, L.: Social network extraction of academic researchers. In: Seventh IEEE International Conference on Data Mining, pp. 292–301. IEEE (2007)Google Scholar
  42. 42.
    Vahtera, P., Buckley, P.J., Aliyev, M., Clegg, J., Cross, A.R.: Influence of social identity on negative perceptions in global virtual teams. J. Int. Manag. 23(4), 367–381 (2017)CrossRefGoogle Scholar
  43. 43.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 1803–1810 (2001)CrossRefGoogle Scholar
  44. 44.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  45. 45.
    West, R., Pfeffer, J.: Armed conflicts in online news: a multilingual study. In: Proceedings of the Eleventh International Conference on Web and Social Media, pp. 309–318. The AAAI Press, Palo Alto, Montreal, May 2017Google Scholar
  46. 46.
    Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRefGoogle Scholar
  47. 47.
    Zhang, A., Culbertson, B., Paritosh, P.: Characterizing online communities using coarse discourse structures. In: Proceedings of the Eleventh International Conference on Web and Social Media, pp. 357–366. The AAAI Press, Palo Alto, Montreal, May 2017Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. P. Sidorov
    • 1
  • A. R. Faizliev
    • 1
    Email author
  • V. A. Balash
    • 1
  • A. A. Gudkov
    • 1
  • A. Z. Chekmareva
    • 1
  • M. Levshunov
    • 1
  • S. V. Mironov
    • 1
  1. 1.Saratov State UniversitySaratovRussian Federation

Personalised recommendations