Skip to main content

Modeling Cities and Landscapes in 3D with CityGML

  • Chapter
  • First Online:
Building Information Modeling

Abstract

CityGML is the most important international standard used to model cities and landscapes in 3D with extensive semantics. Compared to BIM standards such as IFC, CityGML models are usually less detailed but they cover a much greater spatial extent. They are also available in any of five standardized levels of detail. CityGML serves as an exchange format and as a data source for visualizations, either in dedicated applications or in a web browser. It can also be used for a wide range of spatial analyses, such as visibility studies and solar potential. Ongoing research will improve the integration of BIM standards with CityGML, making improved data exchange possible throughout the life-cycle of urban and environmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://xerces.apache.org

  2. 2.

    https://github.com/tudelft3d/val3dity

  3. 3.

    http://www.web3d.org/x3d/what-x3d

  4. 4.

    https://developers.google.com/kml/

  5. 5.

    https://www.khronos.org/collada/

  6. 6.

    http://gun.teipir.gr/VRML-amgem/spec/index.html

  7. 7.

    http://cesiumjs.org/

  8. 8.

    http://www.openwebglobe.org

  9. 9.

    http://www.webglearth.org/

  10. 10.

    https://github.com/KhronosGroup/glTF

  11. 11.

    https://cesiumjs.org/convertmodel.html

  12. 12.

    http://www.gbxml.org/

References

  1. 3D City Database. (2017). (3D city DB: The CityGML database). Retrieved from http://www.3dcitydb.org/

    Google Scholar 

  2. Agugiaro, G. (2016). Energy planning tools and CityGML-based 3D virtual city models: Experiences from Trento (Italy). Applied Geomatics, 8(1), 41–56.

    Article  Google Scholar 

  3. Amirebrahimi, S., Rajabifard, A., Mendis, P., & Ngo, T. (2016). A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. Journal of Spatial Science, 61(2), 317–350.

    Article  Google Scholar 

  4. Amorim, J. H., Valente, J., Pimentel, C., Miranda, A. I., & Borrego, C. (2012). Detailed modelling of the wind comfort in a city avenue at the pedestrian level. In: Leduc, T., Moreau, G., Billen, R. (Eds.), Usage, usability, and utility of 3D city models – European COST action TU0801 (pp. (03,008)1–6). EDP Sciences, Nantes.

    Google Scholar 

  5. Arroyo Ohori, K., Ledoux, H., & Stoter, J. (2015). A dimension-independent extrusion algorithm using generalised maps. International Journal of Geographical Information Science, 29(7), 1166–1186.

    Article  Google Scholar 

  6. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.

    Article  Google Scholar 

  7. Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25–37.

    Article  Google Scholar 

  8. Biljecki, F., Heuvelink, G. B. M., Ledoux, H., & Stoter, J. (2018). The effect of acquisition error and level of detail on the accuracy of spatial analyses. Cartography and Geographic Information Science, 45(2), 156–176. https://doi.org/10.1080/15230406.2017.1279986

    Article  Google Scholar 

  9. Boeters, R., Arroyo Ohori, K., Biljecki, F., & Zlatanova, S. (2015). Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry. International Journal of Geographical Information Science, 29(12), 2248–2268.

    Article  Google Scholar 

  10. Brasebin, M., Perret, J., Mustière, S., & Weber, C. (2012). Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor. In: T. Leduc, G. Moreau, & R. Billen (Eds.), Usage, usability, and utility of 3D city models – European COST action TU0801 (pp. (02,001)1–16). EDP Sciences, Nantes.

    Google Scholar 

  11. Bremer, M., Mayr, A., Wichmann, V., Schmidtner, K., & Rutzinger, M. (2016). A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models. Computers, Environment and Urban Systems, 57, 144–154.

    Article  Google Scholar 

  12. Çağdaş, V. (2013). An application domain extension to CityGML for immovable property taxation: A Turkish case study. International Journal of Applied Earth Observation and Geoinformation, 21, 545–555.

    Article  Google Scholar 

  13. Chaturvedi, K., Yao, Z., & Kolbe, T. H. (2015). Web-based exploration of and interaction with large and deeply structured semantic 3D city models using html5 and webgl. In Wissenschaftlich-Technische Jahrestagung der DGPF und Workshop on Laser Scanning Applications (Vol. 3).

    Google Scholar 

  14. Donkers, S., Ledoux, H., Zhao, J., & Stoter, J. (2016). Automatic conversion of IFC datasets to geometrically and semantically correct CityGML LOD3 buildings. Transactions in GIS, 20(4), 547–569.

    Article  Google Scholar 

  15. El-Mekawy, M., Östman, A., & Hijazi, I. (2012). A unified building model for 3D urban GIS. ISPRS International Journal of Geo-Information, 1(3), 120–145.

    Article  Google Scholar 

  16. Geiger, A., Benner, J., & Haefele, K. H. (2015). Generalization of 3D IFC building models. In M. Breunig, M. Al-Doori, E. Butwilowski, P. V. Kuper, J. Benner, & K. H. Haefele (Eds.), 3D geoinformation science (pp. 19–35). Cham: Springer.

    Google Scholar 

  17. Gröger, G., & Plümer, L. (2012). CityGML – interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33.

    Article  Google Scholar 

  18. Haala, N., & Kada, M. (2010). An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 570–580.

    Article  Google Scholar 

  19. Kim, K., & Wilson, J. P. (2014). Planning and visualising 3D routes for indoor and outdoor spaces using CityEngine. Journal of Spatial Science, 60(1), 179–193.

    Article  Google Scholar 

  20. Kolbe, T. H. (2009). Representing and exchanging 3D city models with CityGML. In: S. Zlatanova & J. Lee (Eds.), 3D geo-information sciences (pp. 15–31). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  21. Ledoux, H. (2013). On the validation of solids represented with the international standards for geographic information. Computer-Aided Civil and Infrastructure Engineering, 28(9), 693–706.

    Article  Google Scholar 

  22. Mao, B., & Ban, Y. (2011). Online visualization of 3D city model using CityGML and X3DOM. Cartographica: The International Journal for Geographic Information and Geovisualization, 46(2), 109–114.

    Article  Google Scholar 

  23. Monien, D., Strzalka, A., Koukofikis, A., Coors, V., & Eicker, U. (2017). Comparison of building modelling assumptions and methods for urban scale heat demand forecasting. Future Cities and Environment, 3(2). https://doi.org/10.1186/s40984-017-0025-7

    Article  Google Scholar 

  24. Nouvel, R., Kaden, R., Bahu, J. M., Kaempf, J., Cipriano, P., Lauster, M., Benner, J., Munoz, E., Tournaire, O., & Casper, E. (2015). Genesis of the CityGML energy ADE. In: J. L. Scartezzini (Ed.), Proceedings of the International Conference on CISBAT 2015 Future Buildings and Districts – Sustainability from Nano to Urban Scale, LESO-PB, EPFL (Lausanne) (pp. 931–936).

    Google Scholar 

  25. Nouvel, R., Zirak, M., Coors, V., & Eicker, U. (2017). The influence of data quality on urban heating demand modeling using 3D city models. Computers, Environment and Urban Systems, 64, 68–80.

    Article  Google Scholar 

  26. OGC. (2012). OGC geography markup language (GML) – Extended schemas and encoding rules 3.3.0. Open Geospatial Consortium.

    Google Scholar 

  27. OGC. (2016). OGC CityGML quality interoperability experiment. Open Geospatial Consortium inc., document OGC 16-064r1.

    Google Scholar 

  28. Open Geospatial Consortium. (2012). OGC city geography markup language (CityGML) encoding standard 2.0.0. Technical report.

    Google Scholar 

  29. Pedrinis, F., Morel, M., & Gesquiére, G. (2015). Change detection of cities. In M. Breunig, M. Al-Doori, E. Butwilowski, P. V. Kuper, J. Benner, & K. H. Haefele (Eds.), 3D geoinformation science (pp. 123–139). Cham: Springer.

    Google Scholar 

  30. Previtali, M., Barazzetti, L., Brumana, R., Cuca, B., Oreni, D., Roncoroni, F., & Scaioni, M. (2014). Automatic façade modelling using point cloud data for energy-efficient retrofitting. Applied Geomatics, 6(2), 95–113.

    Article  Google Scholar 

  31. Prieto, I., Izkara, J. L., & del Hoyo, F. J. D. (2012). Efficient visualization of the geometric information of CityGML: Application for the documentation of built heritage. In B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, & B. O. Apduhan (Eds.), International Conference on Computational Science and Its Applications (pp. 529–544). Berlin/Heidelberg: Springer.

    Google Scholar 

  32. Sokolov, I., & Crosby, J. (2011). Utilizing gbXML with AECOsim building designer and speedikon.

    Google Scholar 

  33. Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-2/C43, 8.

    Google Scholar 

  34. Steuer, H., Machl, T., Sindram, M., Liebel, L., & Kolbe, T. H. (2015). Voluminator—approximating the volume of 3D buildings to overcome topological errors. In F. Bacao, M. Y. Santos, & M. Painho (Eds.), AGILE 2015 (pp. 343–362). Cham: Springer.

    Google Scholar 

  35. van den Brink, L., Stoter, J., & Zlatanova, S. (2013a). Establishing a national standard for 3D topographic data compliant to CityGML. International Journal of Geographical Information Science, 27(1), 92–113. http://dx.doi.org/10.1080/13658816.2012.667105

    Article  Google Scholar 

  36. van den Brink, L., Stoter, J., & Zlatanova, S. (2013b). UML-based approach to developing a CityGML application domain extension. Transactions in GIS, 17(6), 920–942.

    Article  Google Scholar 

  37. van Walstijn, L. (2015). Requirements for an integral testing framework of CityGML instance documents. Master’s thesis, Institute of Geodesy and Geoinformation Science, Technische Universitaet, Berlin.

    Google Scholar 

  38. Vanclooster, A., Van de Weghe, N., & De Maeyer, P. (2016). Integrating indoor and outdoor spaces for pedestrian navigation guidance: A review. Transactions in GIS, 20(4), 491–525.

    Article  Google Scholar 

  39. Wagner, D., Alam, N., Wewetzer, M., Pries, M., & Coors, V. (2015). Methods for geometric data validation of 3D city models. Int Arch Photogramm Remote Sens Spatial Inf Sci, XL-1-W5, 729–735.

    Article  Google Scholar 

  40. Wrózyński, R., Sojka, M., & Pyszny, K. (2016). The application of GIS and 3D graphic software to visual impact assessment of wind turbines. Renewable Energy, 96, 625–635.

    Article  Google Scholar 

  41. Zucker, G., Judex, F., Blöchle, M., Köstl, M., Widl, E., Hauer, S., Bres, A., & Zeilinger, J. (2016). A new method for optimizing operation of large neighborhoods of buildings using thermal simulation. Energy and Buildings, 125, 153–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Arroyo Ohori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arroyo Ohori, K., Biljecki, F., Kumar, K., Ledoux, H., Stoter, J. (2018). Modeling Cities and Landscapes in 3D with CityGML. In: Borrmann, A., König, M., Koch, C., Beetz, J. (eds) Building Information Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-92862-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92862-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92861-6

  • Online ISBN: 978-3-319-92862-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics