Advertisement

M2DC—A Novel Heterogeneous Hyperscale Microserver Platform

  • Ariel Oleksiak
  • Michal Kierzynka
  • Wojciech Piatek
  • Micha vor dem Berge
  • Wolfgang Christmann
  • Stefan Krupop
  • Mario PorrmannEmail author
  • Jens Hagemeyer
  • René Griessl
  • Meysam Peykanu
  • Lennart Tigges
  • Sven Rosinger
  • Daniel Schlitt
  • Christian Pieper
  • Udo Janssen
  • Holm Rauchfuss
  • Giovanni Agosta
  • Alessandro Barenghi
  • Carlo Brandolese
  • William Fornaciari
  • Gerardo Pelosi
  • Joao Pita Costa
  • Mariano Cecowski
  • Robert Plestenjak
  • Justin Cinkelj
  • Loïc Cudennec
  • Thierry Goubier
  • Jean-Marc Philippe
  • Chris Adeniyi-Jones
  • Javier Setoain
  • Luca Ceva
Chapter

Abstract

The Modular Microserver Datacentre (M2DC) project targets the development of a new class of energy-efficient TCO-optimized appliances with built-in efficiency and dependability enhancements. The appliances will be easy to integrate with a broad ecosystem of management software and fully software defined to enable optimization for a variety of future demanding applications in a cost-effective way. The highly flexible M2DC server platform will enable customization and smooth adaptation to various types of applications, while advanced management strategies and system efficiency enhancements (SEE) will be used to improve energy efficiency, performance, security, and reliability. Data center capable abstraction of the underlying heterogeneity of the server is provided by an OpenStack-based middleware. In this chapter, we focus in particular on the architecture of the server platform including a dedicated high-speed, low latency communication infrastructure, give a short introduction into the software stack including thermal management strategies, and provide an overview of the targeted applications.

Notes

Acknowledgements

This work was supported in part by the European Union’s Horizon 2020 research and innovation program, under grant no. 688201, Modular Microserver DataCentre (M2DC).

References

  1. 1.
    Agosta G, Barenghi A, Federico AD, Pelosi G (2015) Opencl performance portability for general-purpose computation on graphics processor units: an exploration on cryptographic primitives. Concur Comput Prac Exp 27(14):3633–3660.  https://doi.org/10.1002/cpe.3358CrossRefGoogle Scholar
  2. 2.
    Agosta G, Barenghi A, Pelosi G (2012) Exploiting bit-level parallelism in GPGPUs: a case study on KeeLoq exhaustive search attacks. In: Mühl G, Richling J, Herkersdorf A (eds) ARCS 2012 workshops, 28 Feb–2 Mar 2012. München, Germany, LNI, GI, vol 200, pp 385–396Google Scholar
  3. 3.
    Agosta G, Barenghi A, Santis FD, Pelosi G (2010) Record setting software implementation of DES using CUDA. In: Latifi S (ed) Seventh international conference on information technology: new generations, ITNG 2010. Las Vegas, Nevada, USA, 12–14 Apr 2010, pp 748–755. IEEE Computer Society.  https://doi.org/10.1109/ITNG.2010.43
  4. 4.
    Amunts K, Lindner A, Zilles K (2014) The human brain project: neuroscience perspectives and German contributions. e-Neuroforum 5(2):43–50Google Scholar
  5. 5.
    Augonnet C, Thibault S, Namyst R, Wacrenier PA (2011) StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurr. Comput. : Pract. Exper. 23(2):187–198.  https://doi.org/10.1002/cpe.1631CrossRefGoogle Scholar
  6. 6.
    vor dem Berge M, Christmann W, Volk E, Wesner S, Oleksiak A, Piontek T, Costa GD, Pierson JM (2012) CoolEmAll—models and tools for optimization of data center energy-efficiency. In: Sustainable internet and ICT for sustainability (SustainIT), 2012, pp 1–5Google Scholar
  7. 7.
    Ciznicki M, Kopta P, Kulczewski M, Kurowski K, Gepner P (2013) Elliptic solver performance evaluation on modern hardware architectures. In: Parallel processing and applied mathematics, pp 155–165. SpringerGoogle Scholar
  8. 8.
    Ciznicki M, Kulczewski M, Kopta P, Kurowski K (2016) Scaling the GCR solver using a high-level stencil framework on multi-and many-core architectures. In: Parallel processing and applied mathematics, pp 594–606. SpringerGoogle Scholar
  9. 9.
    Durand Y, Carpenter PM, Adami S, Bilas A, Dutoit D, Farcy A, Gaydadjiev G, Goodacre J, Katevenis M, Marazakis M, Matus E, Mavroidis I, Thomson J (2014) EUROSERVER: energy efficient node for european micro-servers. In: 2014 17th Euromicro conference on digital system design (DSD), pp 206–213.  https://doi.org/10.1109/DSD.2014.15
  10. 10.
    Eicker N (2015) Taming heterogeneity by segregation—the DEEP and DEEP-ER take on heterogeneous cluster architectures. http://hdl.handle.net/2128/9379
  11. 11.
    Griessl R, Peykanu M, Hagemeyer J, Porrmann M, Krupop S, vor dem Berge M, Kiesel T, Christmann W (2014) A scalable server architecture for next-generation heterogeneous compute clusters. In: Proceedings of the 2014 12th IEEE international conference on embedded and ubiquitous computing, EUC ’14, pp 146–153. IEEE Computer Society, Washington, DC, USA.  https://doi.org/10.1109/EUC.2014.29
  12. 12.
    Lachmair J, Merényi E, Porrmann M, Rückert U (2013) A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing 112(SI).  https://doi.org/10.1016/j.neucom.2012.11.045
  13. 13.
    Lhuillier Y, Philippe JM, Guerre A, Kierzynka M, Oleksiak A (2014) Parallel architecture benchmarking: from embedded computing to HPC, a FIPS project perspective. In: Proceedings of the 2014 12th IEEE international conference on embedded and ubiquitous computing, EUC ’14, pp 154–161. IEEE Computer Society, Washington, DC, USA.  https://doi.org/10.1109/EUC.2014.30
  14. 14.
    Oleksiak A, Kierzynka M, Agosta G, Brandolese C, Fornaciari W, Pelosi G et al (2016) Data centres for IoT applications: the M2DC approach (Invited Paper). In: IEEE international conference on embedded computer systems: architectures, modeling, and simulation (IC-SAMOS 2016). IEEEGoogle Scholar
  15. 15.
    OpenStack Technical Committee: OpenStack Ironic—Baremetal Provisioning. https://wiki.openstack.org/wiki/Ironic. Accessed 1 June 2017
  16. 16.
    PICMG: PICMG COM.0 R2.1—Com express module base specification. http://www.picmg.org. Accessed 1 June 2017
  17. 17.
    Rajovic N, Carpenter PM, Gelado I, Puzovic N, Ramirez A, Valero M (2013) Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Proceedings of the international conference on high performance computing, networking, storage and analysis, SC ’13, pp 40:1–40:12. ACM, New York, NY, USA.  https://doi.org/10.1145/2503210.2503281
  18. 18.
    Rojek KA, Ciznicki M, Rosa B, Kopta P, Kulczewski M, Kurowski K, Piotrowski ZP, Szustak L, Wojcik DK, Wyrzykowski R (2015) Adaptation of fluid model eulag to graphics processing unit architecture. Concurrency and Computation: Practice and Experience 27(4):937–957CrossRefGoogle Scholar
  19. 19.
    Toradex: Apalis Computer Module—Module Specification. http://developer.toradex.com/hardware-resources/arm-family/apalis-module-architecture. Accessed 1 June 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ariel Oleksiak
    • 1
  • Michal Kierzynka
    • 1
  • Wojciech Piatek
    • 1
  • Micha vor dem Berge
    • 2
  • Wolfgang Christmann
    • 2
  • Stefan Krupop
    • 2
  • Mario Porrmann
    • 3
    Email author
  • Jens Hagemeyer
    • 3
  • René Griessl
    • 3
  • Meysam Peykanu
    • 3
  • Lennart Tigges
    • 3
  • Sven Rosinger
    • 4
  • Daniel Schlitt
    • 4
  • Christian Pieper
    • 4
  • Udo Janssen
    • 5
  • Holm Rauchfuss
    • 6
  • Giovanni Agosta
    • 7
  • Alessandro Barenghi
    • 7
  • Carlo Brandolese
    • 7
  • William Fornaciari
    • 7
  • Gerardo Pelosi
    • 7
  • Joao Pita Costa
    • 8
  • Mariano Cecowski
    • 8
  • Robert Plestenjak
    • 8
  • Justin Cinkelj
    • 8
  • Loïc Cudennec
    • 9
  • Thierry Goubier
    • 9
  • Jean-Marc Philippe
    • 9
  • Chris Adeniyi-Jones
    • 10
  • Javier Setoain
    • 10
  • Luca Ceva
    • 11
  1. 1.Poznan Supercomputing and Networking CenterPoznanPoland
  2. 2.Christmann Informationstechnik + Medien GmbH & Co. KGIlsedeGermany
  3. 3.Cognitronics and Sensor Systems GroupCITEC, Bielefeld UniversityBielefeldGermany
  4. 4.OFFIS e. V. – Institute for Information TechnologyOldenburgGermany
  5. 5.CEWE Stiftung & Co. KGaAOldenburgGermany
  6. 6.Huawei Technologies, German Research CenterMunichGermany
  7. 7.DEIB – Politecnico di MilanoMilanoItaly
  8. 8.XLAB d.o.o.LjubljanaSlovenia
  9. 9.CEA, LISTGif-sur-Yvette CEDEXFrance
  10. 10.ARM Ltd.CambridgeUK
  11. 11.Vodafone TelematicsVareseItaly

Personalised recommendations