Advertisement

dReDBox: A Disaggregated Architectural Perspective for Data Centers

  • Nikolaos Alachiotis
  • Andreas Andronikakis
  • Orion Papadakis
  • Dimitris Theodoropoulos
  • Dionisios Pnevmatikatos
  • Dimitris Syrivelis
  • Andrea Reale
  • Kostas Katrinis
  • George Zervas
  • Vaibhawa Mishra
  • Hui Yuan
  • Ilias Syrigos
  • Ioannis Igoumenos
  • Thanasis Korakis
  • Marti Torrents
  • Ferad Zyulkyarov
Chapter

Abstract

Data centers are currently constructed with fixed blocks (blades); the hard boundaries of this approach lead to suboptimal utilization of resources and increased energy requirements. The dReDBox (disaggregated Recursive Datacenter in a Box) project addresses the problem of fixed resource proportionality in next-generation, low-power data centers by proposing a paradigm shift toward finer resource allocation granularity, where the unit is the function block rather than the mainboard tray. This introduces various challenges at the system design level, requiring elastic hardware architectures, efficient software support and management, and programmable interconnect. Memory and hardware accelerators can be dynamically assigned to processing units to boost application performance, while high-speed, low-latency electrical and optical interconnect is a prerequisite for realizing the concept of data center disaggregation. This chapter presents the dReDBox hardware architecture and discusses design aspects of the software infrastructure for resource allocation and management. Furthermore, initial simulation and evaluation results for accessing remote, disaggregated memory are presented, employing benchmarks from the Splash-3 and the CloudSuite benchmark suites.

Notes

Acknowledgements

This work was supported in part by EU H2020 ICT project dRedBox, contract #687632.

References

  1. 1.
    JanusGraph: Distributed graph database (2017). http://janusgraph.org/
  2. 2.
    OpenStack (2017). https://www.openstack.org/
  3. 3.
  4. 4.
  5. 5.
    Andronikakis A (2017) Memory system evaluation for disaggregated cloud data centersGoogle Scholar
  6. 6.
    Bienia C, Kumar S, Singh JP, Li K (2008) The parsec benchmark suite: characterization and architectural implications. In: Proceedings of the 17th international conference on parallel architectures and compilation techniques. ACM, pp 72–81Google Scholar
  7. 7.
    Caulfield AM, Chung ES, Putnam A, Angepat H, Fowers J, Haselman M, Heil S, Humphrey M, Kaur P, Kim JY et al (2016) A cloud-scale acceleration architecture. In: 2016 49th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 1–13Google Scholar
  8. 8.
    Chen F, Shan Y, Zhang Y, Wang Y, Franke H, Chang X, Wang K (2014) Enabling FPGAs in the cloud. In: Proceedings of the 11th ACM conference on computing frontiers. ACM, p 3Google Scholar
  9. 9.
    Dragojević A, Narayanan D, Hodson O, Castro M (2014) Farm: fast remote memory. In: Proceedings of the 11th USENIX conference on networked systems design and implementation, pp 401–414Google Scholar
  10. 10.
    Fahmy SA, Vipin K, Shreejith S (2015) Virtualized FPGA accelerators for efficient cloud computing. In: 2015 IEEE 7th international conference on cloud computing technology and science (CloudCom). IEEE, pp 430–435Google Scholar
  11. 11.
    Ferdman M, Adileh A, Kocberber O, Volos S, Alisafaee M, Jevdjic D, Kaynak C, Popescu AD, Ailamaki A, Falsafi B (2012) Clearing the clouds: a study of emerging scale-out workloads on modern hardware. In: ACM SIGPLAN notices, vol 47. ACM, pp 37–48Google Scholar
  12. 12.
    Kachris C, Soudris D, Gaydadjiev G, Nguyen HN, Nikolopoulos DS, Bilas A, Morgan N, Strydis C, Tsalidis C, Balafas J et al (2016) The vineyard approach: versatile, integrated, accelerator-based, heterogeneous data centres. In: International symposium on applied reconfigurable computing. Springer, pp 3–13Google Scholar
  13. 13.
    Klimovic A, Kozyrakis C, Thereska E, John B, Kumar S (2016) Flash storage disaggregation. In: Proceedings of the eleventh European conference on computer systems. ACM, p 29Google Scholar
  14. 14.
    Lim K, Chang J, Mudge T, Ranganathan P, Reinhardt SK, Wenisch TF (2009) Disaggregated memory for expansion and sharing in blade servers. In: ACM SIGARCH computer architecture news, vol 37. ACM, pp 267–278Google Scholar
  15. 15.
    Lim K, Turner Y, Santos JR, AuYoung A, Chang J, Ranganathan P, Wenisch TF (2012) System-level implications of disaggregated memory. In: 2012 IEEE 18th international symposium on high performance computer architecture (HPCA). IEEE, pp 1–12Google Scholar
  16. 16.
    Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K (2005) Pin: building customized program analysis tools with dynamic instrumentation. ACM SIGPLAN notices vol 40. ACM, pp 190–200Google Scholar
  17. 17.
    Mavroidis I, Papaefstathiou I, Lavagno L, Nikolopoulos DS, Koch D, Goodacre J, Sourdis I, Papaefstathiou V, Coppola M, Palomino M (2016) Ecoscale: reconfigurable computing and runtime system for future exascale systems. In: design, automation & test in Europe conference & exhibition (DATE), 2016. IEEE, pp 696–701Google Scholar
  18. 18.
    Palit T, Shen Y, Ferdman M (2016) Demystifying cloud benchmarking. In: 2016 IEEE international symposium on performance analysis of systems and software (ISPASS), pp 122–132Google Scholar
  19. 19.
    Papadakis O (2017) Memory system evaluation of disaggregated high performance parallel systemsGoogle Scholar
  20. 20.
    Pugsley SH, Jestes J, Balasubramonian R, Srinivasan V, Buyuktosunoglu A, Davis A, Li F (2014) Comparing implementations of near-data computing with in-memory mapreduce workloads. IEEE Micro 34(4):44–52Google Scholar
  21. 21.
    Putnam A, Caulfield AM, Chung ES, Chiou D, Constantinides K, Demme J, Esmaeilzadeh H, Fowers J, Gopal GP, Gray J et al (2014) A reconfigurable fabric for accelerating large-scale datacenter services. In: 2014 ACM/IEEE 41st international symposium on computer architecture (ISCA). IEEE, pp 13–24Google Scholar
  22. 22.
    Rosenfeld P, Cooper-Balis E, Jacob B (2011) Dramsim2: a cycle accurate memory system simulator. IEEE Comput Archit Lett 10(1):16–19CrossRefGoogle Scholar
  23. 23.
    Sakalis C, Leonardsson C, Kaxiras S, Ros A (2016) Splash-3: a properly synchronized benchmark suite for contemporary research. In: 2016 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE, pp 101–111Google Scholar
  24. 24.
    Tu CC, Lee Ct, Chiueh Tc (2014) Marlin: a memory-based rack area network. In: Proceedings of the tenth ACM/IEEE symposium on architectures for networking and communications systems. ACM, pp 125–136Google Scholar
  25. 25.
    Vipin K, Fahmy SA (2014) Dyract: a partial reconfiguration enabled accelerator and test platform. In: 2014 24th international conference on field programmable logic and applications (FPL). IEEE, pp 1–7Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nikolaos Alachiotis
    • 1
    • 2
  • Andreas Andronikakis
    • 2
  • Orion Papadakis
    • 2
  • Dimitris Theodoropoulos
    • 1
    • 2
  • Dionisios Pnevmatikatos
    • 1
    • 2
  • Dimitris Syrivelis
    • 3
  • Andrea Reale
    • 3
  • Kostas Katrinis
    • 3
  • George Zervas
    • 4
  • Vaibhawa Mishra
    • 4
  • Hui Yuan
    • 4
  • Ilias Syrigos
    • 5
  • Ioannis Igoumenos
    • 5
  • Thanasis Korakis
    • 5
  • Marti Torrents
    • 6
  • Ferad Zyulkyarov
    • 6
  1. 1.Foundation for Research and Technology - HellasHeraklionGreece
  2. 2.Technical University of CreteChaniaGreece
  3. 3.IBM ResearchMulhuddartIreland
  4. 4.University College LondonLondonUK
  5. 5.University of ThessalyVolosGreece
  6. 6.Barcelona Supercomputing CenterBarcelonaSpain

Personalised recommendations