Skip to main content

Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs

  • Chapter
  • First Online:
Book cover Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Corals utilize sex-derived diversity to adapt to environmental changes and to occupy new ecological niches. With major declines in coral reefs worldwide and calls for ecosystem-based management, understanding how environmental gradients affect coral reproductive performance over a species’ range and within a demographically relevant timescale is critical. The study of coral reproduction is a mature field with the reproductive aspects of more than 450 species recorded. However, the vast majority of coral reproduction studies have been on shallow reefs, while knowledge of reproduction in mesophotic coral ecosystems (MCEs) is sparse. This knowledge gap hinders our ability to assess the resilience and functionality of MCEs and to understand ecosystem-scale connectivity. Environmental factors that influence coral reproduction, such as light, temperature, and disturbances, can vary dramatically with depth. Sexual reproduction has evolved, partly, to address environmental pressures. We, therefore, expect that environmental parameters can influence reproductive patterns and success. There is currently insufficient information to allow conclusions to be drawn regarding the effects of mesophotic depths on the phenology of coral reproduction, other than it might differ from shallow reefs. Nonetheless, it appears that reproductive performance decreases with depth, with most of the species studied so far in MCEs having exhibited either reduced fecundity or reduced oocyte size compared to shallower populations. Here, we summarize the current knowledge on mesophotic coral reproduction and propose several hypotheses regarding the changes in coral reproductive traits across depth and their implications for population connectivity and persistence. Additionally, we highlight crucial knowledge gaps and recommend future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkaynak D, Treibitz T, Shlesinger T, Tamir R, Loya Y, Iluz D (2017) What is the space of attenuation coefficients in underwater computer vision. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference (CVPR), Honolulu, Hawaii, 21–26 July 2017

    Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Article  Google Scholar 

  • Atoda K (1947) The larva and postlarval development of some reef-building corals. Pocillopora damicornis cespitosa (DANA). Sci Rep Tohoku Univ 4th Ser (Biol) 18:24–47

    Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    CAS  PubMed  Google Scholar 

  • Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379–394

    Google Scholar 

  • Baird AH, Babcock RC, Mundy CP (2003) Habitat selection by larvae influences the depth distribution of six common coral species. Mar Ecol Prog Ser 252:289–293

    Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Google Scholar 

  • Birkeland C, Green A, Fenner D, Squair C, Dahl AL (2013) Substratum stability and coral reef resilience: insights from 90 years of disturbances on a reef in American Samoa. Micronesica 6:1–16

    Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Ogier JJ, Hay KB, van Bleijswijk J, Englebert N, Vermeij MJ, Bak RP, Visser PM, Hoegh-Guldberg O (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. BMC Evol Biol 13:205

    PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Hughes TP, Guinotte JM, Bongaerts P (2013a) Call to protect all coral reefs. Nat Clim Chang 3:528–530

    Google Scholar 

  • Bridge TCL, Hoey AS, Campbell SJ, Muttaqin E, Rudi E, Fadli N, Baird AH (2013b) Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Res 2:187

    PubMed  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Connolly SR, Baird AH (2010) Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91:3572–3583

    PubMed  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BE, van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc B 278:1840–1850

    PubMed  Google Scholar 

  • Crandall JB, Teece MA, Estes BA, Manfrino C, Ciesla JH (2016) Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J Exp Mar Biol Ecol 474:133–141

    CAS  Google Scholar 

  • Cunning R, Gillette P, Capo T, Galvez K, Baker AC (2015) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Google Scholar 

  • Emlet RB, Hoegh-Guldberg O (1997) Effects of egg size on postlarval performance: experimental evidence from a sea urchin. Evolution 51:141–152

    PubMed  Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Rep 6:20964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol Ecol 18:2375–2389

    CAS  PubMed  Google Scholar 

  • Feldman B, Shlesinger T, Loya Y (2018) Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37:201–214

    Google Scholar 

  • Figueiredo J, Baird AH, Connolly SR (2013) Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94:650–659

    PubMed  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71

    CAS  PubMed  Google Scholar 

  • Gilmour JP, Underwood JN, Howells EJ, Gates E, Heyward AJ (2016) Biannual spawning and temporal reproductive isolation in Acropora corals. PLoS ONE 11:e0150916

    PubMed  PubMed Central  Google Scholar 

  • Gorbunov MY, Falkowski PG (2002) Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol Oceanogr 47:309–315

    Google Scholar 

  • Gorospe KD, Karl SA (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol Ecol 22:3721–3736

    PubMed  Google Scholar 

  • Goulet TL, Lucas MQ, Schizas NV (2019) Symbiodiniaceae genetic diversity and symbioses with hosts from shallow to mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 537–551

    Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Google Scholar 

  • Graham NA, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97

    CAS  PubMed  Google Scholar 

  • Harii S, Yamamoto M, Hoegh-Guldberg O (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Mar Biol 157:1215–1224

    CAS  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinski Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 59–85

    Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinski Z (ed) Ecosystems of the world. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL (1984) Mass spawning in tropical reef corals. Science 223:1186–1189

    CAS  PubMed  Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016a) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11:e0146068

    PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Paris CB, Vaz AC, Smith TB (2016b) Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35:23–37

    Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, New York

    Google Scholar 

  • Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Biol 2011:185890

    Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 801–828

    Google Scholar 

  • Keith SA, Maynard JA, Edwards AJ, Guest JR, Bauman AG, van Hooidonk R, Heron SF, Berumen ML, Bouwmeester J, Piromvaragorn S, Rahbek C, Baird AH (2016) Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc R Soc B 283:20160011

    PubMed  PubMed Central  Google Scholar 

  • Keshavmurthy S, Hsu C-M, Kuo C-Y, Denis V, Leung JK-L, Fontana S, Hsieh HJ, Tsai W-L, Su W-C, Chen CA (2012) Larval development of fertilized “pseudo-gynodioecious” eggs suggests a sexual pattern of gynodioecy in Galaxea fascicularis (Scleractinia: Euphyllidae). Zool Stud 51:143–149

    Google Scholar 

  • Kramarsky-Winter E, Loya Y (1998) Reproductive strategies of two fungiid corals from the northern Red Sea: environmental constraints? Mar Ecol Prog Ser 174:175–182

    Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Google Scholar 

  • Leuzinger S, Willis BL, Anthony KR (2012) Energy allocation in a reef coral under varying resource availability. Mar Biol 159:177–186

    Google Scholar 

  • Levitan DR (1996) Effects of gamete traits on fertilization in the sea and the evolution of sexual dimorphism. Nature 382:153

    CAS  Google Scholar 

  • Levitan DR, Fogarty ND, Jara J, Lotterhos KE, Knowlton N (2011) Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65:1254–1270

    PubMed  Google Scholar 

  • Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470

    CAS  PubMed  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    CAS  PubMed  Google Scholar 

  • Loya Y (1976) The Red Sea coral Stylophora Pistillata is an r strategist. Nature 259:478–480

    Google Scholar 

  • Loya Y, Sakai K (2008) Bidirectional sex change in mushroom stony corals. Proc R Soc B 275:2335–2343

    PubMed  PubMed Central  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Marshall DJ, Keough MJ (2007) The evolutionary ecology of offspring size in marine invertebrates. Adv Mar Biol 53:1–60

    PubMed  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S (2010) Phenotype–environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140

    CAS  PubMed  Google Scholar 

  • Mendes J, Woodley J (2002) Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar Ecol Prog Ser 227:241–251

    Google Scholar 

  • Miller SW, Hayward DC, Bunch TA, Miller DJ, Ball EE, Bardwell VJ, Zarkower D, Brower DL (2003) A DM domain protein from a coral, Acropora millepora, homologous to proteins important for sex determination. Evol Dev 5:251–258

    CAS  PubMed  Google Scholar 

  • Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? Proc R Soc B 284:20171551

    PubMed  PubMed Central  Google Scholar 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563

    PubMed  Google Scholar 

  • Mundy C, Babcock R (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J Exp Mar Biol Ecol 223:235–255

    Google Scholar 

  • Mundy C, Babcock R (2000) Are vertical distribution patterns of scleractinian corals maintained by pre-or post-settlement processes? A case study of three contrasting species. Mar Ecol Prog Ser 198:109–119

    Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinski Z (ed) Ecosystems of the world. Elsevier, New York, pp 75–87

    Google Scholar 

  • Nitschke MR, Davy SK, Ward S (2016) Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35:335–344

    Google Scholar 

  • Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7:e38440

    PubMed  PubMed Central  Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL, Padilla-Gamiño JL, Smith CM, Gates RD (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawaiʻi. R Soc Open Sci 2:140351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prada C, Hellberg ME (2013) Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc Natl Acad Sci U S A 110:3961–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasetia R, Sinniger F, Harii S (2016) Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35:53–62

    Google Scholar 

  • Prasetia R, Sinniger F, Hashizume K, Harii S (2017a) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS ONE 12:e0177034

    PubMed  PubMed Central  Google Scholar 

  • Prasetia R, Sinniger F, Harii S (2017b) First record of spawning in the mesophotic Acropora tenella in Okinawa, Japan. Galaxea J Coral Reef Stud 19:5–6

    Google Scholar 

  • Rapuano H, Brickner I, Shlesinger T, Meroz-Fine E, Tamir R, Loya Y (2017) Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea). Sci Rep 7:42670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond RH (1987a) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Google Scholar 

  • Richmond RH (1987b) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604

    Google Scholar 

  • Richmond RH (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 175–197

    Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals – comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Google Scholar 

  • Rinkevich B, Loya Y (1987) Variability in the pattern of sexual reproduction of the coral Stylophora pistillata at Eilat, Red Sea: a long-term study. Biol Bull 173:335–344

    Google Scholar 

  • Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJ, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Google Scholar 

  • Rosser NL, Thomas L, Stankowski S, Richards ZT, Kennington WJ, Johnson MS (2017) Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc R Soc B 284:20162182

    PubMed  PubMed Central  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36:433–444

    Google Scholar 

  • Serrano XM, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, Nunes FLD, Baker AC (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    CAS  PubMed  Google Scholar 

  • Serrano XM, Baums IB, Smith TB, Jones RJ, Shearer TL, Baker AC (2016) Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shlesinger T, Loya Y (2016) Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35:1357–1368

    Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99:421–437

    PubMed  Google Scholar 

  • Shlesinger Y, Loya Y (1985) Coral community reproductive patterns – Red Sea versus the Great Barrier Reef. Science 228:1333–1335

    CAS  PubMed  Google Scholar 

  • Shlesinger Y, Goulet TL, Loya Y (1998) Reproductive patterns of scleractinian corals in the northern Red Sea. Mar Biol 132:691–701

    Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Strader ME, Davies SW, Matz MV (2015) Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R Soc Open Sci 2:150358

    PubMed  PubMed Central  Google Scholar 

  • Sweeney AM, Boch CA, Johnsen S, Morse DE (2011) Twilight spectral dynamics and the coral reef invertebrate spawning response. J Exp Biol 214:770–777

    PubMed  Google Scholar 

  • Thomas CJ, Bridge TCL, Figueiredo J, Deleersnijder E, Hanert E (2015) Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Divers Distrib 21(10):1254–1266

    Google Scholar 

  • Thomson DP, Bearham D, Graham F, Eagle JV (2011) High latitude, deeper water coral bleaching at Rottnest Island, Western Australia. Coral Reefs 30:1107

    Google Scholar 

  • Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784

    CAS  PubMed  Google Scholar 

  • van Woesik R (2009) Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc R Soc B 277:715–722

    PubMed  PubMed Central  Google Scholar 

  • van Woesik R, Lacharmoise F, Köksal S (2006) Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol Lett 9:390–398

    PubMed  Google Scholar 

  • Vaz AC, Paris CB, Olascoaga MJ, Kourafalou VH, Kang H, Reed JK (2016) The perfect storm: match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys. Cont Shelf Res 125:136–146

    Google Scholar 

  • Vize PD (2006) Deepwater broadcast spawning by Montastraea cavernosa, Montastraea franksi, and Diploria strigosa at the Flower Garden Banks, Gulf of Mexico. Coral Reefs 25:169–171

    Google Scholar 

  • Vollmer SV, Palumbi SR (2006) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered 98:40–50

    PubMed  Google Scholar 

  • Wallace CC (1985) Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar Biol 88:217–233

    Google Scholar 

  • Warner PA, Willis BL, van Oppen MJH (2016) Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral. Mol Ecol 25:1398–1415

    PubMed  Google Scholar 

  • Wellington GM, Fitt WK (2003) Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar Biol 143:1185–1192

    CAS  Google Scholar 

  • West S (2009) Sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Willis BL, Babcock RC, Harrison PL, Oliver JK, Wallace CC (1985) Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. In: Proceedings of the 5th International Coral Reef Congress, Tahiti, 1985, vol 4, pp 343–348

    Google Scholar 

  • Yund PO (2000) How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol 15:10–13

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Interuniversity Institute for Marine Sciences (IUI) in Eilat and YL’s lab members for their support. We are grateful to N. Paz for editing the manuscript. We would like to thank the three peer reviewers including Selina Ward, Joana Figueiredo, and an anonymous reviewer. This research was funded by the Israel Science Foundation (ISF) Grants No. 341/12 and 1191/16 to YL and the Israel Taxonomy Initiative and Rieger Foundation Fellowship to TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Shlesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shlesinger, T., Loya, Y. (2019). Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_35

Download citation

Publish with us

Policies and ethics