Skip to main content

Biodiversity of Reef-Building, Scleractinian Corals

  • Chapter
  • First Online:

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Zooxanthellate scleractinian corals are moderately well-known for shallow reef habitats, but not for mesophotic depths (>30 m) that are relatively difficult to access. Mesophotic habitats are light-limited, with different hydrodynamics and sedimentation processes, which result in growth forms that are often difficult to classify using traditional schemes based largely on shallow reef specimens. We analyzed published data and museum records, using specimen-based records to minimize classification issues, finding 53 mesophotic species in the western Atlantic Ocean (85% of total species) and 338 in the Indo-Pacific (45%). Only four species were recorded exclusively below 30 m depth, while the great majority were common shallow reef taxa. Over 96% of western Atlantic and 82% of Indo-Pacific genera and most coral lineages were represented below 30 m depth. In the Indo-Pacific, species and genus richness varied widely between regions and were significantly correlated with shallow reef species richness. Overall, species richness decreased steadily with increasing depth, with little evidence for distinct faunal boundaries: 157 species occurred ≥60 m and 31 deeper than 100 m, with species occurrence only moderately related to phylogeny. Our knowledge of mesophotic biodiversity is rapidly changing as more regions are documented and new molecular techniques suggest taxonomic revisions and resolve deepwater cryptic species. We conclude that mesophotic scleractinian fauna are largely a subset of shallow scleractinian fauna, comprising a significant proportion of coral species and most genera, with the potential to play a significant role in lineage preservation and the future of coral reefs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119

    Article  Google Scholar 

  • Adjeroud M, Andréfouët S, Payri C, Orempüller J (2000) Physical factors of differentiation in macrobenthic communities between atoll lagoons in the central Tuamotu Archipelago (French Polynesia). Mar Ecol Prog Ser 196:25–38

    Article  Google Scholar 

  • Adjeroud M, Fernandez JM, Carroll AG, Harrison PL, Penin L (2010) Spatial patterns and recruitment processes of coral assemblages among contrasting environmental conditions in the southwestern lagoon of New Caledonia. Mar Pollut Bull 61:375–386

    Article  CAS  PubMed  Google Scholar 

  • Adjeroud M, Pichon M, Wallace CC, Bosserelle P (2012) Les coraux scléractiniaires de l`île de Rapa (Polynésie Française). IRD BIODIV expedition report

    Google Scholar 

  • Adjeroud M, Wallace CC, Bosserelle P, Payri C, Menou JL, Pichon M (2016) Reefs at the edge: coral community structure around Rapa, southernmost French Polynesia. Mar Ecol 225:1–11

    Google Scholar 

  • Aeby G, Lovell ER, Richards ZT, Delbeek JT, Reboton C, Bass D (2014) Acropora tenella. The IUCN Red List of Threatened Species 2014: e.T133203A54212697

    Google Scholar 

  • AIMS (2018) Fact sheets, Leptoseris cailleti. Australian Institute of Marine Science. https://coral.aims.gov.au/factsheet.jsp?speciesCode=0688. Accessed 1 Jan 2018

  • Anthony KR, Fabricius K (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  CAS  PubMed  Google Scholar 

  • Anthony KR, Hoogenboom MO, Connolly SR (2005) Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct Ecol 19:17–26

    Article  Google Scholar 

  • Armstrong RA, Singh H, Torres J (2002) Benthic survey of insular slope coral reefs using the Seabed AUV. Backscatter 13:22–25

    Google Scholar 

  • Armstrong RA, Singh H, Torresa J, Nemeth RS, Can A, Roman C, Eustice R, Riggs L, Garcia-Moliner G (2006) Characterizing the deep insular shelf coral reef habitat of the Hind Bank Marine Conservation District (US Virgin Islands) using the Seabed autonomous underwater vehicle. Cont Shelf Res 26:194–205

    Article  Google Scholar 

  • Armstrong RA, Pizarro O, Roman C (2019) Underwater robotic technology for imaging mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 973–988

    Google Scholar 

  • Arrigoni R, Benzoni F, Huang D, Fukami H et al (2016) When forms meet genes: revision of the scleractinian genera Micromussa and Homophyllia (Lobophylliidae) with a description of two new species and one new genus. Contrib Zool 85:87–422

    Article  Google Scholar 

  • Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279

    Article  CAS  Google Scholar 

  • Bak RPM (1977) Coral reefs and their zonation in Netherlands Antilles. Stud Geol 4:3–16

    Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Baker EK, Puglise KA, Harris PT (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, 98 p

    Google Scholar 

  • Benayahu Y, Bridge TCL, Colin PL, Liberman R, McFadden C, Pizarro O, Schleyer MH, Shoham E, Reijnen B, Weis M, Tanaka J (2019) Octocorals of the Indo-Pacific. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 709–728

    Chapter  Google Scholar 

  • Benzoni F, Stefani F, Pichon M, Galli P (2009) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linnean Soc 160:421–456

    Article  Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012) Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Syst Biodivers 10(4):417–433

    Article  Google Scholar 

  • Benzoni F, Arrigoni R, Waheed Z, Stefani F, Hoeksema BW (2014) Phylogenetic relationships and revision of the genus Blastomussa (Cnidaria: Anthozoa: Scleractinia) with description of a new species. Raffles Bull Zool 62:358–378

    Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the ‘deep reef refuge’ hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Chapter  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010a) Assessing the ‘deep reef refugia’ hypothesis: focus on West Atlantic reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010b) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS ONE 5(5):e10871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongaerts P, Kline DI, Hoegh-Guldberg O, Bridge TCL, Muir PR, Wallace CC, Beaman RJ (2011) Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs 30(2):335

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Ogier JJ, Hay KB, van Bleijswijk J, Englebert N, Vermeij MJA, Bak RPM, Visser PM, Hoegh-Guldberg O (2013a) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Englebert N, Hoegh-Guldberg O, Muir PR, Bridge TCL (2013b) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32(4):935

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB et al (2015) Deep down on a West Atlantic reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3(2):e1602373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchon C (1981) Quantitative study of the scleractinian coral communities of a fringing reef of Reunion Island (Indian Ocean). Mar Ecol Prog Ser 4:273–288

    Article  Google Scholar 

  • Brakel A (1979) Small-scale spatial variation in light available to coral reef nenthos: quantum irradiance measurements from a Jamaican reef. Bull Mar Sci 29:406–413

    Google Scholar 

  • Bridge TCL, Done TJ, Friedman A, Beaman RJ, Williams SB, Pizarro O, Webster JM (2011a) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 428:63–75

    Article  Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster JM (2011b) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30:143–153

    Article  Google Scholar 

  • Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179–189

    Article  Google Scholar 

  • Brock VE, Chamberlain TC (1968) A geological and ecological reconnaissance off western Oahu, Hawaii. Pacific Sci 22:373–394

    Google Scholar 

  • Brook G (1892) Preliminary descriptions of new species of Madrepora in the collection of the British Museum. Ann Mag Nat Hist 10:451–465

    Article  Google Scholar 

  • Budd AF (2000) Diversity and extinction in the Cenozoic history of West Atlantic reefs. Coral Reefs 19:25–35

    Article  Google Scholar 

  • Budd AF, Klaus JS, Johnson KG (2011) Cenozoic diversification and extinction patterns in West Atlantic reef corals: a review. Paleontol Soc Papers 17:79–94

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria:Anthozoa:Scleractinia). Zool J Linnean Soc 166:465–529

    Article  Google Scholar 

  • Cabaitan PC, Quimpo TJR, Dumalagan EE Jr, Munar J, Calleja MA, Olavides RDD, Go K, Albelda R, Cabactulan D, Tinacba EJC, Doctor MAA, Villanoy C, Siringan FP (2019) The Philippines. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 265–284

    Chapter  Google Scholar 

  • Cairns SD, Jaap WC, Lang JC (2009) Scleractinia (Cnidaria) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico. Orgins, waters, and biota biodiversity. Texas A & M University Press, College Station, pp 333–347

    Google Scholar 

  • Carpenter KE, Abrar M, Aeby G et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Chassaing JP, Delplanque A, Laborel J (1978) Coraux de Guadeloupe. Centre Régional Formation Prof Collèges. Multigraph, 70 p

    Google Scholar 

  • Chevalier JP (1979) Scilly, atoll de l’Archipel de la Société, Polynésie Française. Géomorphologie et coraux. Bull Antenne Tahiti Mus Nat Hist Nt EPHE 1:31–33

    Google Scholar 

  • Chevalier JP (1982) Reef Scleractinia of French Polynesia. Proc 4th Int Coral Reef Symp 2:177–182

    Google Scholar 

  • Chevalier JP, Kühlmann DHH (1983) Les scléractiniaires Ile de la Société ( Polynésie française). J Soc Océan 77:55–75

    Google Scholar 

  • Colin PL (2009) Marine environments of Palau. Mutual Publ, Honolulu

    Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38:111–128

    Google Scholar 

  • Combosch DJ, Vollmer SV (2015) Trans-Pacific RAD-Seq population genomics confirms introgressive hybridization in eastern Pacific Pocillopora corals. Mol Phylogenet Evol 88:154–162

    Article  PubMed  Google Scholar 

  • Cordeiro RTS, Neves BM, Rosa-Filho JS, Pérez CD (2015) Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull Mar Sci 91:491–510

    Article  Google Scholar 

  • Dai CF, Horng S (2009a) Scleractinia fauna of Taiwan. I. The complex group. National Taiwan University, Taipei, 172 p

    Google Scholar 

  • Dai CF, Horng S (2009b) Scleractinia fauna of Taiwan. II. The robust group. National Taiwan University, Taipei, 162 p

    Google Scholar 

  • Dai CF, Stewart LL, Cooper RA, Sprunk HJ (1992) Distribution of substrates and macrobenthos at depths between 35 and 120 m in southern Taiwan. Acta Oceanographica Taiwan 28:1–18

    Google Scholar 

  • Darwin CR (1889) The structure and distribution of coral reefs. Being the first part of the geology of the voyage of the Beagle, under the command of Capt. Fitzroy, R.N. during the years 1832 to. Smith Elder and Co, London, p 1836

    Google Scholar 

  • Denis V, De Palmas S, Benzoni F et al (2015) Extension of the known distribution and depth range of the scleractinian coral Psammocora stellata: first record from a Taiwanese mesophotic reef. Mar Biodivers 45:619–620

    Article  Google Scholar 

  • Denis V, Soto D, De Palmas S, Lin YTV, Benayahu Y, Huang YM, Liu S-L, Chen J-W, Chen Q, Sturaro N, Ho M-J, Su Y, Dai CF, Chen CA (2019) Taiwan. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 249–264

    Chapter  Google Scholar 

  • Dimond JL, Gamblewood SK, Roberts SB (2017) Genetic and epigenetic insight into morphospecies in a reef coral. Mol Ecol 26(19):5031–5042

    Article  CAS  PubMed  Google Scholar 

  • Dinesen ZD (1980) A revision of the coral genus Leptoseris (Scleractinia: Fungiina: Agariciidae). Mem Qld Mus 20:181–235

    Google Scholar 

  • Dinesen ZD (1983) Shade-dwelling corals of the Great Barrier Reef. Mar Ecol Prog Ser 10:173–185

    Article  Google Scholar 

  • Done TJ (1983) Coral zonation: its nature and significance. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp 107–147

    Google Scholar 

  • Done TJ (2011) Corals: environmental controls on growth. In: Hopley D (ed) Encylopedia of modern coral reefs. Springer, Dordrecht, pp 281–293

    Chapter  Google Scholar 

  • Edinger EN, Limmon GV, Jompa J, Widjamtmoko W et al (2000) Normal growth rates on dying reefs: are coral growth rates good indicators of reef health? Pollut Bull 40:606–617

    Article  Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erezl J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Article  Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay K, Hoegh-Guldberg O (2015) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Mar Biodivers 45:1–2

    Article  Google Scholar 

  • Englebert N, Bongaerts P, Muir P, Hay K, Pichon M, Hoegh-Guldberg O (2017) Lower mesophotic coral communities (60–125 m depth) of the northern Great Barrier Reef and Coral Sea. PLoS ONE 12(2):e0170336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10(6):e0128697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabricius KE, Wolanski E (2000) Rapid smothering of coral reef organisms by muddy marine snow. Estuar Coast Shelf Sci 50:115–120

    Article  Google Scholar 

  • Falkowski PG, Jokiel PL, Kinzie RA III (1990) Irradiance and corals. In: Dubinsky Z (ed) Ecosystems of the world 25: coral reefs. Elsevier, Amsterdam, pp 89–107

    Google Scholar 

  • Faure G (1982) Recherche sur les peuplements de scléractiniaires des récifs coralliens de l`Archipel des Mascareignes (Océan Indien Occidental). Dissertation. Univ. Aix-Marseille II

    Google Scholar 

  • Faure G (1985) Reef scleractinian corals of Rapa and Marotiri, French Polynesia (Austral Islands). Proc 5th Int Coral Reef Symp 6:267–272

    Google Scholar 

  • Faure G, Laboute P (1984) Formations récifales de l`atoll de Tikehau (Tuamotu, Polynésie Française, Océan Pacifique) 1. Définition des unités récifales et distribution des principaux peuplements de scléractiniaires. Notes Doc ORSTOM Tahiti 22:108–136

    Google Scholar 

  • Feldman B, Shlesinger T, Loya Y (2017) Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37:201–214

    Article  Google Scholar 

  • Forsman ZH, Knapp ISS, Tisthammer K, Eaton DAR, Belcaid M, Toonen RJ (2017) Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. Compressa. Mol Phylogenet Evol 111:132–148

    Article  CAS  PubMed  Google Scholar 

  • Frade PR, Reyes-Nivia MC, Faria J, Kaandorp JA, Luttikhizen PC, Bak RPM (2010) Semi-permeable species boundaries in the coral genus Madracis: introgression in a brooding coral system. Mol Phylogenet Evol 57:1072–1090

    Article  CAS  PubMed  Google Scholar 

  • Fricke H, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser 11:113–117

    Article  Google Scholar 

  • Fricke HW, Meischner D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187

    Article  Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). P.S.Z.N. I Mar Ecol 4:163–194

    Article  Google Scholar 

  • Fricke HW, Vareschi R, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:373–381

    Article  Google Scholar 

  • Fujita Y, Kimura T, Atsuo S (2012) Typhoon damage of large-scaled coral communities dominated by Acropora horrida (Dana, 1846) (Scleractinia:Acroporidae) in the mesophotic zone off Kumejima Island, the Ryukyu Islands, Japan. Okinawa J Biol 50:61–66

    Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    Article  CAS  PubMed  Google Scholar 

  • García-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29:277–288

    Article  Google Scholar 

  • Gardiner JS (1904) Madreporaria. Pt. I. Introduction with notes on variation. Pt. II. Astraeidae. In: Gardiner JS (ed) The fauna and geography of the Maldive and Laccadive Archipelagoes, vol 2. Cambridge University Press, Cambridge, pp 755–790

    Google Scholar 

  • Gardiner JS (1905) Madreporaria. Pt. III. Fungida. Pt. IV. Turbinolidae. In: Gardiner JS (ed) The fauna and geography of the Maldive and Laccadive Archipelagoes, vol 2. Cambridge University Press, Cambridge, pp 933–957

    Google Scholar 

  • Ginsburg RN, James NP (1973) British Honduras by submarine. Geotimes 18:23–24

    Google Scholar 

  • Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib Zool 80:107–132

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Goreau TF, Wells JW (1967) The shallow water scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453

    Google Scholar 

  • Gout B, Bablet JP, Goutière G (1997) The atolls of Mururoa and Fangataufa (French Polynesia): III, the living environment and its evolution. Musée océanographique, Monaco

    Google Scholar 

  • Gregg WW, Carder KL (1990) A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol Oceanogr 35:1657–1675

    Article  Google Scholar 

  • Grigg RW (2006) Depth limit for reef building corals in the Auʻau Channel, S.E. Hawaii. Coral Reefs 25:77–84

    Google Scholar 

  • Harmelin-Vivien ML, Laboute P (1986) Catastrophic impacts of hurricanes on atoll outer reef slopes on in the Tuamotu (French Polynesia). Coral Reefs 5:55–62

    Article  Google Scholar 

  • Harris PT, Bridge TCL, Beaman RJ, Webster JM, Nichol SL, Brooke BP (2013) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70:284–293

    Article  Google Scholar 

  • Hartman WD (1973) Beneath West Atlantic reefs. Discovery 9:13–26

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Ho MJ, Hsu CM, Chen CA (2017) Wall of orange cup coral, Tubastraea coccinea, at the inlet breakwaters of a nuclear power plant, southern Taiwan. Mar Biodivers 47:163–164

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema BW (1988) Mobility of free-living fungiid corals (Scleractinia), a dispersion mechanism and survival strategy in dynamic reef habitats. In: Proceedings of the 6th International Coral Reef Symposium, Townsville, Australia, 2, pp 715–720

    Google Scholar 

  • Hoeksema BW (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool Verh 254:1–295

    Google Scholar 

  • Hoeksema BW (2012a) Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). ZooKeys 228:21–37

    Article  Google Scholar 

  • Hoeksema BW (2012b) Distribution patterns of mushroom corals (Scleractinia: Fungiidae) across the Spermonde Shelf, South Sulawesi. Raffles Bull Zool 60:183–212

    Google Scholar 

  • Hoeksema BW (2012c) Evolutionary trends in onshore-offshore distribution patterns of mushroom coral species (Scleractinia: Fungiidae). Contrib Zool 81:199–221

    Article  Google Scholar 

  • Hoeksema BW (2014) The “Fungia patella group” (Scleractinia, Fungiidae) revisited with a description of the mini mushroom coral Cycloseris boschmai sp. n. ZooKeys 371:57–84

    Article  Google Scholar 

  • Hoeksema BW (2015) Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s. Estuar Coast Shelf Sci 165:190–198

    Article  Google Scholar 

  • Hoeksema BW, Best MB (1991) New observations on scleractinian corals from Indonesia: 2. Sipunculan-associated species belonging to the genera Heterocyathus and Heteropsammia. Zool Meded Leiden 65:221–245

    Google Scholar 

  • Hoeksema B, Cairns S (2018) World list of scleractinia. Accessed at http://www.marinespecies.org/scleractinia. Accessed 5 Feb 2018

  • Hoeksema BW, Dai CF (1991) Scleractinia of Taiwan. II Family Fungiidae (with the description of a new species). Bull Zool Inst Acad Sin Taipei 30:201–226

    Google Scholar 

  • Hoeksema BW, Bongaerts P, Baldwin CC (2017a) High coral cover at lower mesophotic depths: a dense Agaricia community at the leeward side of Curaçao, Dutch West Atlantic. Mar Biodivers 47:67

    Article  Google Scholar 

  • Hoeksema BW, Hassell D, Meesters EHWG, Van Duyl FC (2017b) Wave-swept coralliths of Saba Bank, Dutch Caribbean. Mar Biodivers:1–14

    Google Scholar 

  • Hopley D, Smithers SG, Parnell KE (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc 84:1–17

    Article  PubMed  Google Scholar 

  • Huang D (2012) Threatened reef corals of the world. PLoS ONE 7:e34459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans Royal Soc B 370:20140010

    Article  Google Scholar 

  • Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 171:277–355

    Article  Google Scholar 

  • Huang D, Licuanan WZ, Hoeksema BW, Chen CA, Ang PO, Huang H, Lane DJW, Vo ST, Waheed Z, Amri AY, Yeemin T, Chou LM (2015) Extraordinary diversity of reef corals in the South China Sea. Mar Biodivers 45:157–168

    Article  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Mark Eakin C, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Hughes TP Kerry JT, Alvarez-Noriega M et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  PubMed  CAS  Google Scholar 

  • James NP, Ginsburg RN (1979) The seaward margin of the Belize barrier and atoll reefs. Blackwell, Oxford

    Google Scholar 

  • Joannot P, Thomassin BA, Magnier Y (1983) Coral banks in muddy environments in the New Caledonian SW lagoon. Int Soc Coral Reef Stud Ann Meet Nice: 8–9 Dec. 1983

    Google Scholar 

  • Johnson KG, Jackson JBC, Budd AF (2008) West Atlantic reef development was independent of coral diversity over 28 million years. Science 319:1521–1523

    Article  CAS  PubMed  Google Scholar 

  • Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. Galaxea J Coral Reef Stud 15:39–40

    Article  Google Scholar 

  • Kahng SE, Kelley C (2007) Vertical zonation of habitat forming benthic species on a deep photosynthetic reef (50–140 m) in the Auʻau Channel. Hawaii Coral Reefs 26:679–687

    Article  Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest zooxanthellate scleractinian coral in the world? Coral Reefs 25:254

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kahng SE, Wagner, D, Lantz C, Vetter O, Gove J, Merrifield M (2012a) Temperature related depth limits of warm water corals. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia

    Google Scholar 

  • Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012b) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77

    Article  CAS  Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Article  Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T et al (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depths limits of mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 801–828

    Chapter  Google Scholar 

  • Keating B (1985) Submersible observations on the flanks of Johnston Island (Central Pacific Ocean). In Proceedings of 5th International Coral Reef Congress, Tahiti, 6, pp 413–418

    Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477

    Article  Google Scholar 

  • Kiko R, Biastoch A, Brandt P, Cravatte S et al (2017) Biological and physical influences on marine snowfall at the equator. Nat Geosci 10:852–858

    Article  CAS  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5:e11490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo S, Dubinsky Z (eds) The Cnidaria: past, present and future. Springer, Switzerland, pp 41–59

    Chapter  Google Scholar 

  • Kitano F, Benzoni F, Arrigoni R, Shirayama Y, Wallace CC, Fukami H (2014) A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses. PLoS ONE 9(5):e98406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaus JS, Lutz BP, McNeill DF, Budd AF, Johnson KG, Ishman SE (2011) Rise and fall of Pliocene free-living corals in the Caribbean. Geology 39:375–378

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kühlmann DHH (1983) Composition and ecology of deep-water coral associations. Helgolander Meersunters 36:183–204

    Article  Google Scholar 

  • Kühlmann DHH, Chevalier JP (1986) The corals (Scleractinians and Hydrocorals) of the Takapoto Atoll, Tuamotu Islands: ecological aspects. Mar Ecol 7:75–104

    Article  Google Scholar 

  • Laborel J (1970) Madréporaires et Hydrocoralliaires récifaux des côtes brésiliennes. Systématique, ecologie, répartition verticale et géographique. Résultats des campagnes scientifiques de la Calypso fasc. IX. Ann Inst Oceanogr 47:171–229

    Google Scholar 

  • Laboute P, Richer de Forges B (2004) Lagons et récifs de Nouvelle-Calédonie. Editions Catherine Ledru, Nouméa

    Google Scholar 

  • Lane DJW, Hoeksema BW (2016) Mesophotic mushroom coral records at Brunei Darussalam support westward extension of the Coral Triangle to the South China Sea waters of Northwest Borneo. Raffles Bull Zool 64:204–212

    Google Scholar 

  • Lang JC (1974) Biological zonation at the base of a reef: observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am Sci 62:272–281

    Google Scholar 

  • Latypov YY (1990) Scleractinian corals of Vietnam. Part I Thamnasteriidae, Astrocoeniidae, Pocilloporidae, Dendrophylliidae. Nauka, Moscow

    Google Scholar 

  • Latypov YY (1992) Scleractinian corals of Vietnam. Part II Acroporidae. Nauka, Moscow

    Google Scholar 

  • Latypov YY (1995) Scleractinian corals of Vietnam. Part III Faviidae, Fungiidae. Nauka, Moscow

    Google Scholar 

  • Latypov YY, Dautova TN (1996) Scleractinian corals of Vietnam. Part IV Poritidae, Dendrophylliidae. Nauka, Moscow

    Google Scholar 

  • Latypov YY, Dautova TN (1998) Scleractinian corals of Vietnam. Part V Agariciidae, Caryophylliidae, Merulinidae, Mussidae, Oculinidae, Pectiniidae, Siderastreidae. Nauka, Moscow

    Google Scholar 

  • Laverick JH, Andradi-Brown DA, Rogers AD (2017) Using light-dependant scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLoS ONE 12:e0183075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee ZP, Du KP, Arnone R, Liew SC, Penta B (2005) Penetration of solar radiation in the upper ocean: a numerical model for oceanic and coastal waters. J Geophys Res 110:C09019

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photo-acclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Linklater M, Carroll A, Hamylton SM, Jordan AR, Brook BP, Nichol SL, Woodroffe CD (2016) High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res 130:34–46

    Article  Google Scholar 

  • Longenecker K, Roberts TE, Colin PL (2019) Papua New Guinea. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 321–336

    Chapter  Google Scholar 

  • Loya Y, Slobodkin LB (1971) The coral reefs of Eilat (Gulf of Eilat, Red Sea). Symp Zool Soc Lond 28:117–139

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Macintyre IG, Rutzler K, Norris JN, Smith KP, Cairns SD, Bucher KE, Steneck RS (1991) An early Holocene reef in western Atlantic: submersible investigations of a deep relict reef off the west coast of Barbados, WI. Coral Reefs 10:167–174

    Article  Google Scholar 

  • Madin JS, Allen AP, Baird AH, Pandolfi JM, Sommer B (2016) Scope for latitudinal extension of reef corals is species specific. Front Biogeogr 8:e29328

    Article  Google Scholar 

  • Mantelatto MC, Creed JC, Mourão GG, Migotto AE, Lindner A (2011) Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30:397

    Article  Google Scholar 

  • Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4:141–150

    Article  Google Scholar 

  • Massel SR, Done TJ (1993) Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. Coral Reefs 12:153–166

    Article  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Meesters EH, Mueller B, Nugues MM (2013) Caribbean free-living coral species co-occurring deep off the windward coast of Curaçao. Coral Reefs 32:109

    Article  Google Scholar 

  • Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-briones E, Cruz-motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the West Atlantic: regional estimates and distribution patterns. PLoS ONE 5(8):e11916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montano S, Galli P, Hoeksema BW (2017) First record from the Atlantic: a Zanclea-scleractinian association at St. Eustatius, Dutch Caribbean. Mar Biodivers 47:81–82

    Article  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muir PR, Wallace CC (2015) A rare ‘deep-water’ coral assemblage in a shallow lagoon in Micronesia. Mar Biodivers 46:543–544

    Article  Google Scholar 

  • Muir PR, Wallace CC, Done T, Aguirre JD (2015a) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Muir PR, Wallace C, Bridge TCL, Bongaerts P (2015b) Diverse staghorn coral fauna on the mesophotic reefs of North-east Australia. PLoS ONE 10(2):e0117933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muir PR, Wallace CC, Done T, Aguirre JD (2016) Response to letter regarding “Limited scope for latitudinal extension of reef corals.” Front Biogeogr 8.4:e32349

    Google Scholar 

  • Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? Proc R Soc B 284:20171551

    Article  PubMed  PubMed Central  Google Scholar 

  • Muir PR, Pichon M, Squire L, Wallace CC (2018a) Acropora tenella: a zooxanthellate coral extending to 110 m depth in the northern Coral Sea. Mar Biodivers. https://doi.org/10.1007/s12526-018-0855-z

    Article  Google Scholar 

  • Muir PR, Wallace CC, Pichon M, Bongaerts P (2018b) High species richness and lineage diversity of reef corals in the mesophotic zone. Proc Royal Soc B. 285:20181987

    Article  PubMed  PubMed Central  Google Scholar 

  • National Oceanic and Atmospheric Administration [NOAA] (2017) World ocean atlas. https://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html. Accessed 1 Oct 2017

  • Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, White KN, Reimer JD (2013) First record of a mesophotic Pachyseris foliosa reef from Japan. Mar Biodivers 43:71–72

    Article  Google Scholar 

  • Pandolfi JM, Budd AF (2008) Morphology and ecological zonation of Caribbean reef corals: the Montastraea ‘annularis’ species complex. Mar Ecol Prog Ser 369:89–102

    Article  Google Scholar 

  • Pichon M (2007) Scleractinia of New Caledonia: check list of reef dwelling species. In: Payri CE, Richer de Forges B (eds) Compendium of marine species from New Caledonia. IRD Noumea. Doc. Sci and Techniques II 7, pp 149–157

    Google Scholar 

  • Pichon M (2019) French polynesia. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 425–443

    Chapter  Google Scholar 

  • Porter TM, Hajibabaei M (2018) Scaling up: a guide to high throughput genomic approaches for biodiversity analysis. Mol Ecol

    Google Scholar 

  • Prasetia R, Sinniger F, Harii S (2016) Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35:53–62

    Article  Google Scholar 

  • Pyle RL, Copus JM (2019) Mesophotic coral ecosystems: Introduction and overview. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 3–27

    Chapter  Google Scholar 

  • Pyle RL, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL (2017) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. Peer J 4:e2475

    Article  Google Scholar 

  • Queensland Museum (2018) Corals collection http://www.collections.qm.qld.gov.au/search.do?view=label&field-1=USER_SYM_110&bool-1=AND&keyword-1=Corals. Accessed 5 Apr 2018

  • Quelch JJ (1886) Report on the reef-corals collected by H.M.S. Challenger during the years 1873–76. H.M.S.O, London

    Book  Google Scholar 

  • Randall RH (2015) A new mesophotic branching coral species of Psammocora from the Mariana Islands Archipelago (Cnidaria: Scleractinia: Psammocoridae). Bishop Mus Bull Zool 9:129–146

    Google Scholar 

  • Reed JK (1985) Deepest distribution of Atlantic hermatypic coral discovered in the Bahamas. In: Proceedings 5th International Coral Reef Congress, Tahiti 6, pp 249–254

    Google Scholar 

  • Rees M, Heyward A, Cappo M, Speare P, Smith L (2004) Ningaloo marine park—initial survey of seabed biodiversity in intermediate and deeper waters. Australian Institute of Marine Science, Crawley

    Google Scholar 

  • Richards ZT, Wallace CC (2004) Acropora rongelapensis sp. nov., a new species of Acropora from the Marshall Islands (Scleractinia: Astrocoeniina: Acroporidae). Zootaxa 590:1–5

    Article  Google Scholar 

  • Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67:1043–1068

    Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems of the Hawaiian Archipelago. Coral Reefs 29:361–367

    Article  Google Scholar 

  • Roos PJ (1964) The distribution of reef corals in Curaçao. Studies Fauna Curaçao, pp 1–51

    Google Scholar 

  • Rosser NL, Thomas L, Stankowski S, Richards ZT, Kennington WJ, Johnson MS (2017) Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc Royal Soc B 284:20162182

    Article  Google Scholar 

  • Santodomingo N, Wallace CC, Johnson KG (2015a) Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia. Zool J Linnean Soc 175:677–763

    Article  Google Scholar 

  • Santodomingo N, Novak V, Pretković V, Marshall N, Di Martino E, Capelli ELG, Rösler A, Reich S, Braga JC, Renema W, Johnson KG (2015b) A diverse patch reef from turbid habitats in the Middle Miocene (East Kalimantan, Indonesia). Palaios 30:28–149

    Article  Google Scholar 

  • Sarano F Pichon M (1988) Morphology and ecology of the deep fore reef slope at Osprey Reef, (Coral Sea). In: Proceedings of the 6th International Coral Reef Symposium, Australia, 1988, vol. 2

    Google Scholar 

  • Scheer G, Pillai CSG (1983) Report on the stony corals from the Red Sea. Zoologica 133:1–198

    Google Scholar 

  • Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linnean Soc 170:1–33

    Article  Google Scholar 

  • Schuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9

    Article  Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2016) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36(2):433–443

    Article  Google Scholar 

  • Sheppard CRC (1980) Coral cover, zonation and diversity on reef slopes of Chagos Atolls, and population structures of the major species. Mar Ecol Prog Ser 2:193–205

    Article  Google Scholar 

  • Sheppard CRC (1982) Coral populations on reef slopes and their major controls. Mar Ecol Prog Ser 7:83–115

    Article  Google Scholar 

  • Sherman CE, Locker SD, Webster JM, Weinstein DK (2019) Geology and geomorphology. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 849–878

    Chapter  Google Scholar 

  • Shlesinger T, Loya Y (2019) Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 653–666

    Chapter  Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99:421–437

    Article  PubMed  Google Scholar 

  • Sinniger F, Harii S (2018) Studies on mesophotic coral ecosystems in Japan. In: Iguchi A, Hongo C (eds) Coral reef studies in Japan. Springer, Singapore, pp 140–162

    Chapter  Google Scholar 

  • Sinniger F, Morita M, Harii S (2012) “Locally extinct” coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32:16

    Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41

    Article  Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS, Pittman SJ, Calnan JM, Kaidson E, Gass J (2010) Benthic structure and cryptic mortality in a West Atlantic mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29:289–308

    Article  Google Scholar 

  • Soares MO, Davis M, De Paiva CC, Carneiro PBM (2016) Mesophotic ecosystems: coral and fish assemblages in a tropical marginal reef (northeastern Brazil). Mar Biodivers

    Google Scholar 

  • Thompson CW (1878) The voyage of the “Challenger:” The Atlantic: a preliminary account of the general results of the exploring voyage of H.M.S. “Challenger” during the year 1873 and the early part of the year 1876, vol I. Harper & Brothers, New York

    Google Scholar 

  • Turak E, DeVantier L (2019) Reef-building corals of the upper mesophotic zone of the central Indo-West Pacific. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 621–651

    Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74(9):2309–2320

    Article  Google Scholar 

  • Van Oppen MJH, Willis BL, Van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • van Woesik R, Franklin EC, O’Leary J, McClanahan TR, Klaus JS, Budd AF (2012) Hosts of the Plio-Pleistocene past reflect modernday coral vulnerability. Proc R Soc B 279:2448–2456

    Google Scholar 

  • Vaughan TW (1907) Recent Madreporaria of the Hawaiian Islands and Laysan. U.S. Natl Mus Bull 49:1–427

    Google Scholar 

  • Vermeij MJA, Diekmann OE, Bak RPM (2003) A new species of scleractinian coral (Cnidaria, Anthozoa), Madracis carmabi, n. sp. from the Caribbean. Bull Mar Sci 73:679–684

    Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M (1982) Scleractinia of Eastern Australia part 4, family Poritidae. Australian Institute of Marine Science, ANU Press, Canberra

    Google Scholar 

  • Veron JEN, Wallace CC (1984) Scleractinia of eastern Australia part 5, family Acroporidae. Australian Institute of Marine Science, ANU Press, Canberra

    Google Scholar 

  • Veron JEN, Stafford-Smith MG, Turak E, DeVantier LM (2017) Corals of the world. http://www.coralsoftheworld.org/coral_geographic/interactive_map/?version=0.01 Accessed 23 Jan 2018

  • Vize PD (2006) Deepwater broadcast spawning by Montastraea cavernosa, Montastraea franksi, and Diploria strigosa at the Flower Garden Banks, Gulf of Mexico. Coral Reefs 25:161–179

    Article  Google Scholar 

  • Wagner D, Pochon X, Irwin L, Toonen RT, Gates RD (2011) Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc Royal Soc B 278:1323–1328

    Article  CAS  Google Scholar 

  • Wagner D, Kosaki RK, Spalding HI, Whitton RK, Pyle RI (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodivers Rec 7:1–10

    Article  Google Scholar 

  • Waheed Z, Benzoni F, van der Meij SET, Terraneo TI, Hoeksema BW (2015) Scleractinian corals (Fungiidae, Agariciidae and Euphylliidae) of Pulau Layang-Layang, Spratly Islands, with a note on Pavona maldivensis (Gardiner, 1905). ZooKeys 517:1–37

    Article  Google Scholar 

  • Wallace CC (1994) New species and a new species-group of the coral genus Acropora (Scleractinia:Astrocoeniina:Acroporidae) from Indo-Pacific locations. Invertebr Taxon 8:961–988

    Article  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora. CSIRO Publishing, Collingwood

    Book  Google Scholar 

  • Wallace CC (2012) Acroporidae of the West Atlantic. Geol Belg 15:388–393

    Google Scholar 

  • Wallace CC, Budd AF (2009) Mirror-image fossils reveal colony form of extinct Curaçao Isopora. Coral Reefs 28:715

    Article  Google Scholar 

  • Wallace CC, Chen CA, Fukami H, Muir PR (2007) Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis and elevation of the subgenus Isopora Studer, 1878 to genus. Coral Reefs 26:231–239

    Article  Google Scholar 

  • Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland Memoirs of the Queensland Museum. Nature 57:1–255

    Google Scholar 

  • Weil E (2019) Disease problems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 779–800

    Chapter  Google Scholar 

  • Wells JW (1954) Recent corals of the Marshall Islands. US Geol Surv Prof Pap 260:385–486

    Google Scholar 

  • Wells JW (1973) New and old scleractinian corals from Jamaica. Bull Mar Sci 23:16–58

    Google Scholar 

  • Wells JW (1985) Notes on Indo-Pacific scleractinian corals II. A new species of Acropora from Australia. Pac Sci 39:338–339

    Google Scholar 

  • White KN, Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, Naruse T, McClelland T, Denis V, Reimer JD (2013) Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. Peer J 1:e151

    Article  PubMed  PubMed Central  Google Scholar 

  • White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD (2017) Shifting communities after typhoon damage on an upper mesophotic reef in Okinawa, Japan. Peer J 5:e3573

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolanski E, Delesalle B (1995) Upwelling by internal waves, Tahiti, French Polynesia. Estuar Coast Shelf Sci 60:705–716

    Article  Google Scholar 

  • Yamazato K (1972) Bathymetric distribution of corals in the Ryukyu Islands. Proceedings of the Symposium for Corals and Coral Reefs, 1969. Marine Biology Association India, 121–133

    Google Scholar 

  • Yentsch CS, Yentsch CM, Cullen JJ, Lapointe B, Phinney DA, Yentsch SW (2002) Sunlight and water transparency: cornerstones in coral research. J Exp Mar Biol Ecol 268:171–183

    Article  Google Scholar 

  • Zlatarski VN, Martinez-Estalella N (1982) Les scléractiniaires de Cuba. Académie Bulgare des Sciences, Sofia

    Google Scholar 

Download references

Acknowledgments

We thank Héloïse Rouzé, Pim Bongaerts, Carden Wallace, and Frederic Sinniger for contributing insightful comments, David Aguirre (Massey University) for assistance with the phylogenetic analysis, and the West Australian Museum for supplying data on their collections. We are also grateful to the five reviewers, including Zoe Richards, Bert Hoeksema, and Marjorie Reaka, who provided excellent input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Muir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muir, P.R., Pichon, M. (2019). Biodiversity of Reef-Building, Scleractinian Corals. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_33

Download citation

Publish with us

Policies and ethics