Advertisement

Counter Machines and Distributed Automata

A Story About Exchanging Space and Time
  • Olivier Carton
  • Bruno Guillon
  • Fabian Reiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10875)

Abstract

We prove the equivalence of two classes of counter machines and one class of distributed automata. Our counter machines operate on finite words, which they read from left to right while incrementing or decrementing a fixed number of counters. The two classes differ in the extra features they offer: one allows to copy counter values, whereas the other allows to compute copyless sums of counters. Our distributed automata, on the other hand, operate on directed path graphs that represent words. All nodes of a path synchronously execute the same finite-state machine, whose state diagram must be acyclic except for self-loops, and each node receives as input the state of its direct predecessor. These devices form a subclass of linear-time one-way cellular automata.

Notes

Acknowledgments

We are grateful to the anonymous reviewers for their constructive comments. We also thank Martin Kutrib and Pierre Guillon for interesting discussions, especially concerning the connection of our results with the field of cellular automata. This work was partially supported by the ERC project EQualIS (FP7-308087) and the DeLTA project (ANR-16-CE40-0007).

References

  1. 1.
    Alur, R., D’Antoni, L., Deshmukh, J., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: LICS 2013, pp. 13–22. IEEE Computer Society (2013)Google Scholar
  2. 2.
    Dyer, C.: One-way bounded cellular automata. Inf. Control 44(3), 261–281 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dymond, P.: Indirect addressing and the time relationships of some models of sequential computation. Comput. Math. Appl. 5(3), 193–209 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fischer, P., Meyer, A., Rosenberg, A.: Counter machines and counter languages. Math. Syst. Theor. 2(3), 265–283 (1968)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Cellular Automata and Discrete Complex Systems, Turku, Finland. TUCS Lecture Notes, vol. 24, pp. 65–73, June 2015. hal-id: hal-01294144Google Scholar
  6. 6.
    Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen, T., Luosto, K., Suomela, J., Virtema, J.: Weak models of distributed computing, with connections to modal logic. Distrib. Comput. 28(1), 31–53 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999).  https://doi.org/10.1007/978-1-4612-0539-5CrossRefzbMATHGoogle Scholar
  8. 8.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334(1–3), 3–33 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kutrib, M.: Cellular automata - a computational point of view. In: Bel-Enguix, G., Jiménez-López, M.D., Martín-Vide, C. (eds.) New Developments in Formal Languages and Applications. SCI, vol. 113, pp. 183–227. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78291-9_6CrossRefGoogle Scholar
  10. 10.
    Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theor. Comput. Sci. 411(38–39), 3516–3526 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuusisto, A.: Modal logic and distributed message passing automata. In: CSL 2013. LIPIcs, vol. 23, pp. 452–468 (2013)Google Scholar
  12. 12.
    Kuusisto, A., Reiter, F.: Emptiness problems for distributed automata. In: GandALF 2017. EPTCS, vol. 256, pp. 210–222 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar
  14. 14.
    Malcher, A.: Descriptional complexity of cellular automata and decidability questions. J. Autom. Lang. Comb. 7(4), 549–560 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Minsky, M.: Recursive unsolvability of post’s problem of “tag” and other topics in theory of turing machines. Ann. Math. 74(3), 437–455 (1961)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications, vol. 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRefGoogle Scholar
  17. 17.
    Petersen, H.: Simulations by time-bounded counter machines. Int. J. Found. Comput. Sci. 22(2), 395–409 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Reiter, F.: Asynchronous distributed automata: a characterization of the modal mu-fragment. In: ICALP 2017. LIPIcs, vol. 80, pp. 100:1–100:14 (2017)Google Scholar
  19. 19.
    Seidel, S.: Language recognition and the synchronization of cellular automata. Technical report 79–02, Department of Computer Science, University of Iowa (1979)Google Scholar
  20. 20.
    Terrier, V.: Language recognition by cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 123–158. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-540-92910-9_4CrossRefGoogle Scholar
  21. 21.
    Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel, W., Schneider, H.J. (eds.) Parallel Processes and Related Automata, vol. 3, pp. 181–191. Springer, Vienna (1981).  https://doi.org/10.1007/978-3-7091-8596-4_13CrossRefGoogle Scholar
  22. 22.
    Vollmar, R.: Some remarks about the “efficiency” of polyautomata. Int. J. Theor. Phys. 21(12), 1007–1015 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.IRIF, Université Paris DiderotParisFrance
  2. 2.Department of Computer ScienceUniversity of MilanMilanItaly
  3. 3.LSV, Université Paris-SaclayParisFrance

Personalised recommendations