Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 11))

  • 1421 Accesses

Abstract

Thermal-responsive surfaces are commonly existing in the living system and widely used in the practical applications. Recently, thermal-responsive superwetting surfaces have aroused worldwide interest and made big progress in fundamental research and practical applications in smart controllable fluid devices. This chapter focuses on the thermal-responsive superwetting surfaces and their applications, particularly on the switchable wettability on different thermal-responsive surfaces, the superwetting surfaces at high and low temperatures, the cooperation of temperature and other stimulus-responsive superwetting surfaces and the applications of thermal-responsive superwetting surfaces including the movement of liquid droplet, switchable surfaces adhesion and oil/water separation by temperature driving. Finally, we will briefly address personal points of the future development and remaining challenges of the thermal-responsive superwetting surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernardin JD, Mudawar I (1999) The leidenfrost point: experimental study and assessment of existing models. J Heat Transf 121:894–903

    Article  Google Scholar 

  • Biance AL, Clanet C, Quéré D (2003) Leidenfrost drops. Phys Fluids 15:1632–1637

    Article  CAS  Google Scholar 

  • Boreyko JB, Chen CH (2009) Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett 103(1–4):184501

    Article  PubMed  CAS  Google Scholar 

  • Cao YZ, Liu N, Fu CK, Li K, Tao L, Feng L, Wei Y (2014) Thermo and PH dual-responsive materials for controllable oil/water separation. ACS Appl Mater Interfaces 6:2026–2030

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Ghosh UU, Chakraborty S, Dasgupta S (2015) Thermally enhanced self-propelled droplet motion on gradient surfaces. RSC Adv 5:45266–45275

    Article  CAS  Google Scholar 

  • Chang CJ, Kuo EH (2010) Roughness-enhanced thermal-responsive surfaces by surface-initiated polymerization of polymer on ordered ZnO pore-array films. Thin Solid Films 519:1755–1760

    Article  CAS  Google Scholar 

  • Chen L, Bonaccurso E (2014) Electrowetting-from statics to dynamics. Adv Colloid Interface Sci 210:2–12

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Yang S (2014) Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays. Adv Mater 26:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu MJ, Bai H, Chen PP, Xia F, Han D, Jiang L (2009) Antiplatelet and thermally responsive poly (N-isopropylacrylamide) surface with nanoscale topography. J Am Chem Soc 131:10467–10472

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Ferris R, Zhang JM, Ducker R, Zauscher S (2010a) Stimulus-responsive polymer brushes on surfaces: transduction mechanisms and applications. Prog Polym Sci 35:94–112

    Article  CAS  Google Scholar 

  • Chen L, Liu MJ, Lin L, Zhang T, Ma J, Song YL, Jiang L (2010b) Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. Soft Matter 6:2708–2712

    Article  CAS  Google Scholar 

  • Crevoisier GD, Fabre P, Corpart JM, Leibler L (1999) Switchable tackiness and wettability of a liquid crystalline polymer. Science 285:1246–1249

    PubMed  Google Scholar 

  • Cui HJ, Zhang PC, Wang WS, Li GN, Hao YW, Wang LY, Wang ST (2017) Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface. Nano Res 10:1345–1355

    Article  CAS  Google Scholar 

  • Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase change on a gradient surface. Science 291:633–666

    Article  CAS  PubMed  Google Scholar 

  • De LA, Advincula RC (2014) Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern. ACS Appl Mater Interfaces 6:22666–22672

    Article  CAS  Google Scholar 

  • Dorrer C, Rühe J (2008) Mimicking the stenocara beetle-dewetting of drops from a patterned superhydrophobic surface. Langmuir 24:6154–6158

    Article  CAS  PubMed  Google Scholar 

  • Elashnikov R, Slepička P, Rimpelova S, Ulbrich P, Švorčík V, Lyutakov O (2017) Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater Sci Eng C 72:293–300

    Article  CAS  Google Scholar 

  • Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078

    Article  CAS  Google Scholar 

  • Gao J, Liu YL, Xu HP, Wang ZQ, Zhang X (2010) Biostructure-like surfaces with thermally responsive wettability prepared by temperature-induced phase separation micromolding. Langmuir 26:9673–9676

    Article  CAS  PubMed  Google Scholar 

  • Gao ZX, Zhai XL, Wang CY (2015) Facile transformation of superhydrophobicity to hydrophilicity by silica/poly (epsilon-caprolactone) composite film. Appl Surf Sci 359:209–214

    Article  CAS  Google Scholar 

  • Gao L, Kong TF, Huo YP (2016) Dual thermoresponsive and PH-responsive poly (vinyl alcohol) derivatives: synthesis, phase transition study, and functional applications. Macromolecules 49:7478–7489

    Article  CAS  Google Scholar 

  • García-Huete N, Cuevas JM, Laza JM, Vilas JL, León LM (2015) Polymeric shape-memory micro-patterned surface for switching wettability with temperature. Polymers 7:1674–1688

    Article  CAS  Google Scholar 

  • Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ, Teare DOH, Badyal JPS (2007) Mimicking a Stenocara Beetle’s back for microcondensation using plasmachemical patterned superhydrophobic−superhydrophilic surfaces. Langmuir 23:689–693

    Article  CAS  PubMed  Google Scholar 

  • González E, Frey MW (2017) Synthesis, characterization and electrospinning of poly (vinyl caprolactam-co-hydroxymethyl acrylamide) to create stimuli-responsive nanofibers. Polymer 108:154–162

    Article  CAS  Google Scholar 

  • Gu SY, Wang ZM, Li JB, Ren J (2010) Switchable wettability of thermos-responsive biocompatible nanofibrous films created by electrospinning. Macromol Mater Eng 295:32–36

    Article  CAS  Google Scholar 

  • Gu YJ, Zhou SX, Luo HL, Wu LM, Gao W, Yang J (2016) Temperature-dependent phase-segregation behavior and antifouling performance of UV-curable methacrylated PDMS/PEG coatings. J Polym Sci Polym Phys 54:1612–1162

    Article  CAS  Google Scholar 

  • Guo Y, Xia F, Xu L, Li J, Yang WS, Jiang L (2010) Switchable wettability on cooperative dual-responsive poly-l-lysine surface. Langmuir 26:1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385

    Article  CAS  PubMed  Google Scholar 

  • He M, Ding Y, Chen J, Song YL (2016) Spontaneous uphill movement and self-removal of condensates on hierarchical tower-like arrays. ACS Nano 10:9456–9462

    Article  CAS  PubMed  Google Scholar 

  • Hou YP, Gao LC, Feng SL, Chen Y, Xue Y, Jiang L, Zheng YM (2013a) Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chem Commun 49:5253–5255

    Article  CAS  Google Scholar 

  • Hou YP, Xue BL, Guan S, Feng SL, Geng Z, Sui X, Lu JH, Cao LC, Jiang L (2013b) Temperature-controlled directional spreading of water on a surface with high hysteresis. Comput Method Appl Mech 5:162–168

    Google Scholar 

  • Hu SX, Cao XY, Song YL, Li C, Xie P, Jiang L (2008) New responsive property of poly (epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic. Chem Commun 112:2025–2027

    Article  CAS  Google Scholar 

  • Hu JL, Meng HP, Li GQ, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:53001–53023

    Article  CAS  Google Scholar 

  • Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie H, Ping TS, Shibata T, Hashimoto K (2005) Reversible control of wettability of a TiO2 surface by introducing surface roughness. Electrochem Solid-State Lett 8:D23–D25

    Article  CAS  Google Scholar 

  • Jiang BY, Pang H (2016) Synthesis and self-assembly of thermoresponsive block-graft fluoropolymer as well as its tunable wettability surface. J Polym Sci Polym Chem 54:992–1002

    Article  CAS  Google Scholar 

  • Jiang BY, Zhang L, Liao B, Pang H (2014) Self-assembly of well-defined thermo-responsive fluoropolymer and its application in tunable wettability surface. Polymer 55:5350–5357

    Article  CAS  Google Scholar 

  • Joseph G, Pichardo J, Chen GF (2010) Reversible photo−/thermoresponsive structured polymer surfaces modified with a spirobenzopyran-containing copolymer for tunable wettability. Analyst 135:2303–2308

    Article  CAS  PubMed  Google Scholar 

  • Ju GN, Cheng MJ, Xiao M, Xu JM, Pan K, Wang X, Zhang YJ, Shi F (2013) Smart transportation between three phases through a stimulus-responsive functionally cooperating device. Adv Mater 25:2915–2919

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Truong B, Buongiorno J, Hu LW (2011) On the effect of surface roughness height, wettability, and nanoporosity on leidenfrost phenomena. Appl Phys Lett 98:083121

    Article  CAS  Google Scholar 

  • Kim SM, Kang DH, Koh JH, Suh HS, Yoon H, Suh KY, Char K (2013) Thermoresponsive switching of liquid flow direction on a two-face prism array. Soft Matter 9:4145–4149

    Article  CAS  Google Scholar 

  • Konosu Y, Matsumoto H, Tsuboi K, Minagawa M, Tanioka A (2011) Enhancing the effect of the nanofiber network structure on thermosresponsive wettability switching. Langmuir 27:14716–14720

    Article  CAS  PubMed  Google Scholar 

  • Lei ZW, Zhang GZ, Deng YH, Wang CY (2017) Thermo-responsive melamine sponges with switchable wettability by interface-initiated atom transfer radical polymerization for oil/water separation. ACS Appl Mater Interfaces 9:8967–8974

    Article  CAS  PubMed  Google Scholar 

  • Leidenfrost JG (1756) De Aquae Communis Nonullis Qualitatibus Tractatus. Ovenius, Duisburg on Rhine

    Google Scholar 

  • Li C, Guo RW, Jiang X, Hu SX, Li L, Cao XY, Yang H, Song YL, Ma YM, Jiang L (2009) Reversible switching of water-droplet mobility on a superhydrophobic surface based on a phase transition of a side-chain liquid-crystal polymer. Adv Mater 21:4254–4258

    Article  CAS  Google Scholar 

  • Li SH, Richard F, Toprak MS, Björn P, Mamoun M (2010) Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater 18:2215–2220

    Article  CAS  Google Scholar 

  • Li JJ, Zhou YN, Luo ZH (2014a) Thermo-responsive brush copolymers with structure-tunable LCST and switchable surface wettability. Polymer 55:6552–6560

    Article  CAS  Google Scholar 

  • Li JJ, Zhou YN, Luo ZH (2014b) Thermal-responsive block copolymers for surface with reversible switchable wettability. Ind Eng Chem Res 53:18112–18120

    Article  CAS  Google Scholar 

  • Li BL, Lu XL, Ma YH, Chen Z (2014c) Thermo- and PH-responsive behaviors of aqueous poly (acrylic acid)/poly (4-vinylpyridine) complex material characterized by ATR-FTIR and UV-VIS spectroscopy. Eur Polym J 60:255–261

    Article  CAS  Google Scholar 

  • Li JJ, Zhu LT, Luo ZH (2016) Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem Eng J 287:474–481

    Article  CAS  Google Scholar 

  • Lim HS, Kwak D, Lee DY, Lee SG, Cho K (2007) UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J Am Chem Soc 129:4128–4129

    Article  CAS  PubMed  Google Scholar 

  • Lin XL, Tang DY, Yu ZQ, Feng Q (2014) Stimuli-responsive electrospun nanofibers from poly (N-isopropylacrylamide)-co-poly (acrylic acid) copolymer and polyurethane. J Mater Chem B 2:651–658

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Wang ST (2014) Poly (N-isopropylacrylamide)-based thermo-responsive surfaces with controllable cell adhesion. Sci China Chem 57:552–557

    Article  CAS  Google Scholar 

  • Liu KS, Yao X, Jiang L (2010a) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Zheng YM, Zhai J, Jiang L (2010b) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Ye QA, Yu B, Liang YM, Liu WM, Zhou F (2010c) Switching water droplet adhesion using responsive polymer brushes. Langmuir 26:12377–12382

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Ju J, Ma J, Zheng YM, Jiang L (2014a) Directional drop transport achieved on high-temperature anisotropic wetting surfaces. Adv Mater 26:6086–6091

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Ju J, Zheng YM, Jiang L (2014b) Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano 8:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Zhang XQ, Wang ST, Jiang L (2015) Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity. Small 11:3338–3342

    Article  CAS  PubMed  Google Scholar 

  • Londe G, Chunder A, Wesser A, Zhai L, Cho HJ (2008) Microfluidic valves based on superhydrophobic nanostructures and switchable thermosensitive surface for lab-on-a-chip (LOC) systems. Sensor Actuat B-Chem 132:431–438

    Article  CAS  Google Scholar 

  • Manabe K, Matsubayashi T, Tenjimbayashi M, Moriya T, Tsuge Y, Kyung KH, Shiratori S (2016) Controllable broadband optical transparency and wettability switching of temperature-activated solid/liquid-infused nanofibrous membranes. ACS Nano 10:9387–9396

    Article  CAS  PubMed  Google Scholar 

  • Muthiah P, Hoppe SM, Boyle TJ, Sigmund W (2011) Thermally tunable surface wettability of electrospun fiber mats: polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)]. Macromol Rapid Commun 32:1716–1721

    Article  CAS  PubMed  Google Scholar 

  • Nagappan S, Ha CS (2015) Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A 3:3224–3251

    Article  CAS  Google Scholar 

  • Nakata K, Kimura H, Sakai M, Ochiai T, Sakai H, Murakami T, Abe M, Fujishima A (2010) UV/thermally driven rewritable wettability patterns on TiO2-PDMS composite films. ACS Appl Mater Interfaces 2:2485–2488

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Yamada N, Kumashiro Y, Kanazawa H, Yamato M, Okano T (2012) Thermoresponsive poly (N-isopropylacrylamide)-based block copolymer coating for optimizing cell sheet fabrication. Macromol Biosci 12:751–760

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3:671–690

    Article  CAS  Google Scholar 

  • Niu XQ, Ran F, Chen LM, Lu GJE, Hu PG, Deming CP, Peng Y, Rojas-Andrade MD, Chen SW (2016) Thermo-switchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes. Langmuir 32:4297–4304

    Article  CAS  PubMed  Google Scholar 

  • Nykänen A, Hirvonen SP, Tenhu H, Mezzenga R, Ruokolainen J (2014) Wetting behaviour and direct observation of thermally responsive polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene electrospun fibres in aqueous environment. Polym Int 63:37–43

    Article  CAS  Google Scholar 

  • Ou RW, Wei J, Jiang L, Simon GP, Wang HT (2015) Robust thermoresponsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation. Environ Sci Technol 50:906–914

    Article  CAS  Google Scholar 

  • Park KC, Kim P, Grinthal A, He N, Fox D, Weaver JC, Aizenberg J (2015) Condensation on slippery asymmetric bumps. Nature 531:78–82

    Article  CAS  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    Article  CAS  PubMed  Google Scholar 

  • Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nature Nanotechnol 6:798–802

    Article  CAS  Google Scholar 

  • Prins MWJ, Welters WJJ, Weekamp JW (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291:277–280

    Article  CAS  PubMed  Google Scholar 

  • Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99

    Article  CAS  Google Scholar 

  • Raczkowska J, Stetsyshyn Y, Awsiuk K, Zemla J, Kostruba A, Harhay K, Marzec M, Bernasik A, Lishchynskyi O, Ohar H, Budkowski A (2016) Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Adv 6:87469–87477

    Article  CAS  Google Scholar 

  • Saitoh T, Suzuki Y, Hiraide M (2002) Preparation of poly (N-isopropylacrylamide)-modified glass surface for flow control in microfluidics. Anal Sci 18:203–205

    Article  CAS  PubMed  Google Scholar 

  • Saitoh T, Sekino A, Hiraide M (2005) Manipulate fluid in microchannels with thermo-responsive film. Anal Chim Acta 536:179–182

    Article  CAS  Google Scholar 

  • Seeber M, Zdyrko B, Burtovvy R, Andrukh T, Tsai CC, Owens JR, Kornev KG, Luzinov I (2011) Surface grafting of thermoresponsive microgel nanoparticles. Soft Matter 7:9962–9971

    Article  CAS  Google Scholar 

  • Shi XJ, Chen GJ, Wang YW, Yuan L, Zhang Q, Haddleton DM, Chen H (2013) Control the wettability of poly (N-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more ADA, the bigger impact? Langmuir 29:14188–14195

    Article  CAS  PubMed  Google Scholar 

  • Song WL (2014) Adhesion switch on a gecko-foot inspired smart nanocupule surface. Nanoscale 6:13435–13439

    Article  CAS  PubMed  Google Scholar 

  • Song WL, Xia F, Bai YB, Liu FQ, Sun TL, Jiang L (2007) Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film. Langmuir 23:327–331

    Article  PubMed  CAS  Google Scholar 

  • Song WL, Li H, Wang CM, Yang B (2014) Design of multi-stage thermal responsive wettable surface. Adv Mater Interfaces 1:1400009

    Article  CAS  Google Scholar 

  • Stetsyshyn Y, Zemla J, Zolobko O, Fornal K, Budkowski A, Kostruba A, Donchak V, Harhay K, Awsiuk K, Rysz J, Bernasik A, Voronov S (2012) Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly (N-isopropylacrylamide): wettability, morphology, and protein adsorption. J Colloid Interf Sci 387:95–105

    Article  CAS  Google Scholar 

  • Stetsyshyn Y, Fornal K, Raczkowska J, Zemla J, Kostruba A, Ohar H, Ohar M, Donchak V, Harhay K, Awsiuk K, Rysz J, Bernasik A, Budkowski A (2013) Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. J Colloid Interf Sci 411:247–256

    Article  CAS  Google Scholar 

  • Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  PubMed  CAS  Google Scholar 

  • Su B, Guo W, Jiang L (2015) Learning from nature: binary cooperative complementary nanomaterials. Small 11:1072–1096

    Article  CAS  PubMed  Google Scholar 

  • Sun TL, Liu H, Song WL, Wang X, Jiang L, Li L, Zhu DB (2004a) Responsive aligned carbon nanotubes. Angew Chem Int Ed 43:4663–4666

    Article  CAS  Google Scholar 

  • Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB (2004b) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360

    Article  CAS  Google Scholar 

  • Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhou SX, You B, Wu LM, Mater J (2013) A facile method for the fabrication of superhydrophobic films with multiresponsive and reversibly tunable wettability. J Mater Chem A 1:3146–3154

    Article  CAS  Google Scholar 

  • Thickett SC, Neto C, Harris AT (2011) Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv Mater 23:3718–3722

    Article  CAS  PubMed  Google Scholar 

  • Tian DL, Zhang XF, Tian Y, Wu Y, Wang X, Zhai J, Jiang L (2012) Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. J Mater Chem 22:19652–19657

    Article  CAS  Google Scholar 

  • Tian DL, Guo ZY, Wang YL, Li WX, Zhang XF, Zhai J, Jiang L (2013a) Phototunable underwater oil adhesion of micro/nanoscale hierarchical-structured ZnO mesh films with switchable contact mode. Adv Funct Mater 24:536–542

    Article  CAS  Google Scholar 

  • Tian DL, Song YL, Jiang L (2013b) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209

    Article  CAS  PubMed  Google Scholar 

  • Tonhauser C, Golriz AA, Moers C, Klein R, Butt HJ, Frey H (2012) Stimuli-responsive y-shaped polymer brushes based on junction-point-reactive block copolymers. Adv Mater 24:5559–5563

    Article  CAS  PubMed  Google Scholar 

  • Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res A 69:70–78

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Izumi N, Sukata S, Kojima Y, Nakamura S, Irie M (2006) Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface. Angew Chem Int Ed 45:6470–6473

    Article  CAS  Google Scholar 

  • Vakarelski IU, Patankar NA, Marston JO, Chan DY, Thoroddsen ST (2012) Stabilization of leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489:274–277

    Article  CAS  PubMed  Google Scholar 

  • Varanasi KK, Hsu M, Bhate N, Yang WS, Deng T (2009) Spatial control in the heterogeneous nucleation of water. Appl Phys Lett 95:144101

    Article  CAS  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  CAS  Google Scholar 

  • Wang ST, Song YL, Jiang L (2007) Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C 8:18–29

    Article  CAS  Google Scholar 

  • Wang N, Zhao Y, Jiang L (2008) Low-cost, thermoresponsive wettability of surfaces: poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning. Macromol Rapid Commun 29:485–489

    Article  Google Scholar 

  • Wang CF, Liao CS, Kuo SW, Lin HC (2011) Tunable wettability of carbon nanotube/poly (ɛ-caprolactone) hybrid films. Appl Surf Sci 257:9152–9157

    Article  CAS  Google Scholar 

  • Wang N, Guo FY, Wu J, Zhao Y, Jiang L (2014) Variable responsive wettability films via electrospinning induced by solvents. J Nanomater 9:1–7

    Google Scholar 

  • Wang Y, Lai C, Hu H, Liu Y, Fei B, Xin JH (2015a) Temperature-responsive nanofibers for controllable oil/water separation. RSC Adv 5:51078–51085

    Article  CAS  Google Scholar 

  • Wang TQ, Chen HX, Liu K, Wang SL, Xue PH, Yu Y, Ge P, Zhang JH, Yang B (2015b) Janus Si micropillar arrays with thermal-responsive anisotropic wettability for manipulation of microfluid motions. ACS Appl Mater Interfaces 7:376–382

    Article  CAS  PubMed  Google Scholar 

  • Wen LP, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399

    Article  CAS  Google Scholar 

  • Wheeler AR (2008) Chemistry putting electrowetting to work. Science 322:539–540

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Xue YH, Pei XW, Cai MR, Duan HL, Huck WTS, Zhou F, Xue QJ (2014) Adhesion-regulated switchable fluid slippage on superhydrophobic surfaces. J Phys Chem C 118:2564–2569

    Article  CAS  Google Scholar 

  • Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858

    Article  CAS  Google Scholar 

  • Xia F, Feng L, Wang ST, Sun TL, Song WL, Jiang WH, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18:432–436

    Article  CAS  Google Scholar 

  • Xia F, Ge H, Hou Y, Sun TL, Chen L, Zhang GZ, Jiang L (2007) Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater 19:2520–2524

    Article  CAS  Google Scholar 

  • Xia HW, Xia F, Tang YC, Guo W, Hou X, Chen L, Hou Y, Zhang GZ, Jiang L (2011) Tuning surface wettability through supramolecular interactions. Soft Matter 7:1638–1640

    Article  CAS  Google Scholar 

  • Xu QF, Liu Y, Lin FJ, Mondal B, Lyons AM (2013) Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl Mater Interfaces 5:8915–8924

    Article  CAS  PubMed  Google Scholar 

  • Xue BL, Gao LC, Hou YP, Liu ZW, Jiang L (2013) Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: application as a dual water/oil on-off switch. Adv Mater 25:273–277

    Article  CAS  PubMed  Google Scholar 

  • Yan RX, Gargas D, Yang PD (2009) Nanowire photonics. Nat Photonics 3:569–576

    Article  CAS  Google Scholar 

  • Yang J, Zhang ZZ, Men XH, Xu XH, Zhu XH (2011) Thermo-responsive surface wettability on a pristine carbon nanotube film. Carbon 49:19–23

    Article  CAS  Google Scholar 

  • Yang HR, Esteves ACC, Zhu HJ, Wang DJ, Xin JH (2012) In-situ study of the structure and dynamics of thermo-responsive pnipaam grafted on a cotton fabric. Polymer 53:3577–3586

    Article  CAS  Google Scholar 

  • Yang WK, Tang ZC, Luan YF, Liu W, Li D, Chen H (2014) Thermoresponsive copolymer decorated surface enables controlling the adsorption of a target protein in plasma. ACS Appl Mater Interfaces 6:10146–10152

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Hu Y, Grinthal A, Wong TS, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater 12:529–534

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Ju J, Yang S, Wang JJ, Jiang L (2014) Temperature-driven switching of water adhesion on organogel surface. Adv Mater 26:1895–1900

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Wei DX, Che XM, Cai LW, Tao L, Liu L, Wu LP, Chen GQ (2016) Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-ethylmethacrylate) for controllable protein adsorption. Polym Chem 7:5957–5965

    Article  CAS  Google Scholar 

  • Yokota S, Matsuyama K, Kitaoka T, Wariishi H (2007) Thermally responsive wettability of self-assembled methylcellulose nanolayers. Appl Surf Sci 253:5149–5154

    Article  CAS  Google Scholar 

  • Yoshida Y, Kawahara K, Inamoto K, Mitsumune S, Ichikawa S, Kuzuya A, Ohya Y (2017) Biodegradable injectable polymer systems exhibiting temperature-responsive irreversible sol-to-gel transition by covalent bond formation. ACS Biomater Sci Eng 3:56–67

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wang Z, Jiang Y, Shi F, Zhang X (2005) Reversible PH-responsive surface: from superhydrophobicity to superhydrophilicity. Adv Mater 17:1289–1293

    Article  CAS  Google Scholar 

  • Yu NZ, Wang SL, Liu YS, Xue PH, Ge P, Nan JJ, Ye SS, Liu WD, Zhang JH, Yang B (2017) Thermal-responsive anisotropic wetting microstructures for manipulation of fluids in microfluidics. Langmuir 33:494–502

    Article  CAS  PubMed  Google Scholar 

  • Yuan WF, Jiang GY, Wang JX, Wang GJ, Song YL, Jiang L (2006) Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules 39:1300–1303

    Article  CAS  Google Scholar 

  • Zareie HM, Boyer C, Bulmus V, Nateghi E, Davis TP (2008) Temperature-responsive self-assembled monolayers of oligo (ethylene glycol): control of biomolecular recognition. ACS Nano 2:757–765

    Article  CAS  PubMed  Google Scholar 

  • Zeng PT, Kuo CC, Lin ST, Chiu YC, Chen WC (2010) New thermoresponsive luminescent electrospun nanofibers prepared from poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)/PMMA blends. Macromol Chem Phys 211:1408–1416

    Article  CAS  Google Scholar 

  • Zhai L, Berg MC, Cebeci FC, Kim Y, Milwid JM, Rubner MF, Cohen RE (2015) Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Appl Phys Lett 6:1213–1217

    Google Scholar 

  • Zhang SJ, Zhan L, Bucknall DG, He LH, Hong KL, Mays JW, Allen MG (2011a) Thermally switchable thin films of an ABC, triblock copolymer of poly (N-butyl methacrylate)-poly (methyl methacrylate)-poly (2-fluoroethyl methacrylate). Appl Surf Sci 257:9673–9677

    Article  CAS  Google Scholar 

  • Zhang T, Wang JM, Chen L, Zhai J, Song YL, Jiang L (2011b) High-temperature wetting transition on micro- and nanostructured surfaces. Angew Chem Int Ed 50:5311–5314

    Article  CAS  Google Scholar 

  • Zhang X, Guo YG, Zhang PY, Wu ZS, Zhang ZJ (2012) Superhydrophobic and superoleophilic nanoparticle film: synthesis and reversible wettability switching behavior. ACS Appl Mater Interfaces 4:1742–1746

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Yao G, Cheng YL, Xu YY, Yang L, Lv JG, Shi SW, Jiang XS, He G, Wang PH, Song XP, Sun ZQ (2015) Temperature-dependent differences in wettability and photocatalysis of TiO2 nanotube arrays thin films. Appl Surf Sci 356:546–552

    Article  CAS  Google Scholar 

  • Zhao TY, Nie FQ, Jiang L (2010) Precise control of wettability from LCST tunable surface. J Mater Chem 20:2176–2181

    Article  CAS  Google Scholar 

  • Zhao X, Liu Y, Lu J, Zhou JH, Li JH (2012) Temperature-responsive polymer/carbon nanotube hybrids: smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH. Chem-Eur J 18:3687–3694

    Article  CAS  PubMed  Google Scholar 

  • Zhou MY, Xie R, Yu YL, Chen G, Ju XJ, Yang LH, Liang B, Chu LY (2009) Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition. J Colloid Interface Sci 336:162–170

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Li JH, Yan BF, Wu D, Zhang QQ (2014) Thermo-responsive and antifouling PVDF nanocomposited membranes based on PNIPAAm modified TiO2 nanoparticles. Chinese J Polym Sci 7:892–905

    Article  CAS  Google Scholar 

  • Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:e101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Chinese National Natural Science Foundation (21671012, 21373001, 21601013), Beijing Natural Science Foundation (2172033), the 973 Program (2013CB933004), the Fundamental Research Funds for the Central Universities, and the 111 Project (B14009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, D., He, L., Jiang, L. (2018). Thermal-Responsive Superwetting Surface. In: Hozumi, A., Jiang, L., Lee, H., Shimomura, M. (eds) Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces. Biologically-Inspired Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-92654-4_4

Download citation

Publish with us

Policies and ethics