Optimization of the University Transportation by Contraction Hierarchies Method and Clustering Algorithms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10870)


This research work focuses on the study of different models of solution reflected in the literature, which treat the optimization of the routing of vehicles by nodes and the optimal route for the university transport service. With the recent expansion of the facilities of a university institution, the allocation of the routes for the transport of its students, became more complex. As a result, geographic information systems (GIS) tools and operations research methodologies are applied, such as graph theory and vehicular routing problems, to facilitate mobilization and improve the students transport service, as well as optimizing the transfer time and utilization of the available transport units. An optimal route management procedure has been implemented to maximize the level of service of student transport using the K-means clustering algorithm and the method of node contraction hierarchies, with low cost due to the use of free software.


Optimization Vehicle routing University transportation K-means Clustering algorithms Contraction hierarchies Free software 


  1. 1.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Toth, P., Vigo, D.: Vehicle Routing Problem, Methods, and Application (2014)Google Scholar
  3. 3.
    Martí, R.: Procedimientos Metaheurísticos en Optimización Combinatoria. Dep. d’Estadística i Investig. Oper. pp. 1–60 (2001)Google Scholar
  4. 4.
    Eldrandaly, K.A., Abdallah, A.M.F.: A novel GIS-based decision-making framework for the school bus routing problem. Geo-Spatial Inf. Sci. 15(1), 51–59 (2012)CrossRefGoogle Scholar
  5. 5.
    Huo, L., Yan, G., Fan, B., Wang, H., Gao, W.: School bus routing problem based on ant colony optimization algorithm. In: 2014 IEEE Conference of Expo and Transportation Electrification, Asia-Pacific (ITEC Asia-Pacific), no. 1, pp. 1–5 (2014)Google Scholar
  6. 6.
    Shiripour, S., Mahdavi-Amiri, N., Mahdavi, I.: Optimal location-multi-allocation-routing in capacitated transportation networks under population-dependent travel times. Int. J. Comput. Integr. Manuf. 29(6), 652–676 (2016)CrossRefGoogle Scholar
  7. 7.
    Hashi, E.K., Hasan, M.R., Zaman, M.S.U.: GIS based heuristic solution of the vehicle routing problem to optimize the school bus routing and scheduling. In: 9th International Conference on Computer and Information Technology, ICCIT 2016, pp. 56–60 (2016)Google Scholar
  8. 8.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). Scholar
  9. 9.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  11. 11.
    Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. J. Exp. Algorithm. 18, 1.1–1.43 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Open Source Routing Machine DEMO (2017). Accessed 23 Mar 2017
  13. 13.
    Fu, L., Sun, D., Rilett, L.R.: Heuristic shortest path algorithms for transportation applications: state of the art. Comput. Oper. Res. 33(11), 3324–3343 (2006)CrossRefGoogle Scholar
  14. 14.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  15. 15.
    Shen, C.-W., Quadrifoglio, L.: Evaluation of zoning design with transfers for paratransit services, no. 2277 (2012)CrossRefGoogle Scholar
  16. 16.
    Ng, W.L., Leung, S.C.H., Lam, J.K.P., Pan, S.W.: Petrol delivery tanker assignment and routing: a case study in Hong Kong. J. Oper. Res. Soc. 59(9), 1191–1200 (2008)CrossRefGoogle Scholar
  17. 17.
    Yossi, S.: Logistics Clusters. Mit Press, Cambridge (2012)Google Scholar
  18. 18.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithms: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefGoogle Scholar
  19. 19.
    OSMF, OpenStreetMap (2017). Accessed 07 Apr 2017
  20. 20.
    Kim, B.-I., Kim, S., Sahoo, S.: Balanced clustering algorithms for improving shapes on vehicle routing problems. In: IIE Annual Conference and Exhibition 2004 (2004)Google Scholar
  21. 21.
    Herrera, I.: Diseño y evaluación de un algoritmo genético para ruteo vehicular que permita optimizar la distribución en una empresa comercializadora de autopartes en quito, Escuela Superior Politécnica del Litoral (2015)Google Scholar
  22. 22.
  23. 23.
    Rueda, S.: Plan Especial de Indicadores de Sostenibilidad Ambiental de la Actividad Urbanística de Sevilla. Agencia Ecol. Urbana Barcelona, Barcelona (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería en Ciencias AplicadasUniversidad Técnica del NorteIbarraEcuador
  2. 2.Escuela de Ciencias Matemáticas y Tecnología InformáticaYachay TechSan Miguel de UrcuquíEcuador
  3. 3.Department of Production and LogisticsTechnische Universität DortmundDortmundGermany
  4. 4.Instituto Tecnológico MetropolitanoMedellínColombia

Personalised recommendations