Fingertips Segmentation of Thermal Images and Its Potential Use in Hand Thermoregulation Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10870)


Thermoregulation refers to the physiological processes that maintain stable the body temperatures. Infrared thermography is a non-invasive technique useful for visualizing these temperatures. Previous works suggest it is important to analyze thermoregulation in peripheral regions, such as the fingertips, because some disabling pathologies affect particularly the thermoregulation of these regions. This work proposes an algorithm for fingertip segmentation in thermal images of the hand. By using a supervised index, the results are compared against segmentations provided by humans. The results are outstanding even when the analyzed images are highly resized.


Thermorregulation Thermal hand images Fingertip segmentation NPR measurement 



This work is supported by Colciencias grant 564-2015.


  1. 1.
    Park, K.S., Park, K.I., Kim, J.W., Yun, Y.J., Kim, S.H., Lee, C.H., Park, J.W., Lee, J.M.: Efficacy and safety of korean red ginseng for cold hypersensitivity in the hands and feet: a randomized, double-blind, placebo-controlled trial. J. Ethnopharmacol. 158, 25–32 (2014)CrossRefGoogle Scholar
  2. 2.
    Packham, T.L., Fok, D., Frederiksen, K., Thabane, L., Buckley, N.: Reliability of infrared thermometric measurements of skin temperature in the hand. J. Hand Ther. 25(4), 358–362 (2012)CrossRefGoogle Scholar
  3. 3.
    Pauling, J.D., Shipley, J.A., Hart, D.J., McGrogan, A., McHugh, N.J.: Use of laser speckle contrast imaging to assess digital microvascular function in primary raynaud phenomenon and systemic sclerosis: a comparison using the raynaud condition score diary. J. Rheumatol. 42(7), 1163–1168 (2015)CrossRefGoogle Scholar
  4. 4.
    Lim, M.J., Kwon, S.R., Jung, K.H., Joo, K., Park, S.G., Park, W.: Digital thermography of the fingers and toes in raynaud’s phenomenon. J. Korean Med. Sci. 29(4), 502–506 (2014)CrossRefGoogle Scholar
  5. 5.
    Roldan, K.E., Piedrahita, M.A.O., Benitez, H.D.: Spatial-temporal features of thermal images for carpal tunnel syndrome detection. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, pp. 90190E–90190E (2014)Google Scholar
  6. 6.
    Ramírez, L., Jiménez, K., Correa, A., Giraldo, J., Fandiño Toro, H.: Protocolo de adquisición de imágenes diagnósticas por termografía infrarroja. Medicina Laboratorio 21, 161–178 (2015)Google Scholar
  7. 7.
    Niehof, S.P., Huygen, F.J., van der Weerd, R.W., Westra, M., Zijlstra, F.J.: Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system. Biomed. Eng. Online 5(1), 30 (2006)CrossRefGoogle Scholar
  8. 8.
    Kistler, A., Mariauzouls, C., von Berlepsch, K.: Fingertip temperature as an indicator for sympathetic responses. Int. J. Psychophysiol. 29(1), 35–41 (1998)CrossRefGoogle Scholar
  9. 9.
    Romeijn, N., Verweij, I.M., Koeleman, A., Mooij, A., Steimke, R., Virkkala, J., van der Werf, Y., Van Someren, E.J.: Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance. Sleep 35(12), 1673–1683 (2012)CrossRefGoogle Scholar
  10. 10.
    Ruch, D.S., Vallee, J., Li, Z., Smith, B.P., Holden, M., Koman, L.A.: The acute effect of peripheral nerve transection on digital thermoregulatory function. J. Hand Surg. 28(3), 481–488 (2003)CrossRefGoogle Scholar
  11. 11.
    Blank, M., Kargel, C.: Infrared imaging to measure temperature changes of the extremities caused by cigarette smoke and nicotine gums. In: 2006 Proceedings of the IEEE Instrumentation and Measurement Technology Conference, IMTC 2006, pp. 794–799. IEEE (2006)Google Scholar
  12. 12.
    Zhang, H.D., He, Y., Wang, X., Shao, H.W., Mu, L.Z., Zhang, J.: Dynamic infrared imaging for analysis of fingertip temperature after cold water stimulation and neurothermal modeling study. Comput. Biol.Med. 40(7), 650–656 (2010)CrossRefGoogle Scholar
  13. 13.
    Bauer, E., De Freitas, V.P., Mustelier, N., Barreira, E., de Freitas, S.S.: Infrared thermography-evaluation of the results reproducibility. Struct. Surv. 33(1), 20–35 (2015)CrossRefGoogle Scholar
  14. 14.
    Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)CrossRefGoogle Scholar
  15. 15.
    Zapata, N., Orrego, S., Ramírez, L., Castro, A., Fandiño Toro, H.: Processing of thermal images oriented to the automatic analysis of hand thermoregulation. In: IFMBE Proceedings (2016)Google Scholar
  16. 16.
    Ertas, I.H., Hocaoglu, E., Patoglu, V.: Assiston-finger: An under-actuated finger exoskeleton for robot-assisted tendon therapy. Robotica 32(08), 1363–1382 (2014)CrossRefGoogle Scholar
  17. 17.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, CVPR Workshops, p. 34. IEEE (2005)Google Scholar
  18. 18.
    Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmentation of natural images via lossy data compression. omput. Vis. Image Underst. 110(2), 212–225 (2008)CrossRefGoogle Scholar
  19. 19.
    Arroyave-Giraldo, M., Restrepo-Martíne, A., Vargas-Bonilla, F.: Incidencia de la segmentación en la obtención de región de interés en imágenes de palma de la mano. Tecno Lógicas, vol. 27, pp. 119–138 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Tecnológico Metropolitano - MedellínGrupo de Investigación Automática, Electrónica y Ciencias ComputacionalesMedellínColombia
  2. 2.Universidad Técnica del NorteIbarraEcuador
  3. 3.Yachay TechUrcuquíEcuador

Personalised recommendations