Skip to main content

Multi-plant Protection: A Game-Theoretical Model for Improving Chemical Clusters Patrolling

  • Chapter
  • First Online:
Game Theory for Managing Security in Chemical Industrial Areas

Abstract

Due to economies of scale and all kinds of collaboration benefits, chemical plants are usually geographically clustered, forming chemical industrial parks or so-called ‘chemical clusters’. Some examples of such clusters are the Antwerp port chemical cluster in Belgium, the Rotterdam port chemical cluster in the Netherlands, the Houston chemical cluster in the US, or the Tianjin chemical cluster in China. Besides fixed security countermeasures within every plant, the patrolling of security guards is also scheduled, for securing these chemical facilities at different points and times, e.g. at night. The patrolling can either be single-plant oriented, which can be completely scheduled by the plant itself, or it can be multiple-plants oriented, which should be scheduled by an institute at a higher level than the single-plant level, for instance a multiple plant council (MPC) [1] Both types of patrolling have a drawback of not being able to deal with intelligent attackers. Some patrollers follow a fixed patrolling route, and in this case the adversary is able to predict the patroller’s position at a certain time. Other patrollers purely randomize their patrolling, without taking into consideration the hazardousness level that each installation/facility/plant holds, and if this is the case, the adversary may focus to attack the most dangerous installations/facilities/plants since all installations/facilities/plants are equally patrolled.

This chapter is mainly based on the paper of Zhang and Reniers [6]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reniers G, Pavlova Y. Using game theory to improve safety within chemical industrial parks. London: Springer; 2013.

    Book  Google Scholar 

  2. Shieh E, An B, Yang R, Tambe M, Baldwin C, DiRenzo J, et al., editors. Protect: a deployed game theoretic system to protect the ports of the United States. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems-volume 1. International Foundation for Autonomous Agents and Multiagent Systems; 2012.

    Google Scholar 

  3. Fang F, Stone P, Tambe M, editors. When security games go green: designing defender strategies to prevent poaching and illegal fishing. IJCAI; 2015.

    Google Scholar 

  4. Rezazadeh A, Zhang L, Reniers G, Khakzad N, Cozzani V. Optimal patrol scheduling of hazardous pipelines using game theory. Process Saf Environ Prot. 2017;109:242–56.

    Article  Google Scholar 

  5. Alpern S, Morton A, Papadaki K. Patrolling games. Oper Res. 2011;59(5):1246–57.

    Article  Google Scholar 

  6. Zhang L, Reniers G. CCP game: a game-theoretical model for improving chemical clusters patrolling. Accepted for publication in Reliability Engineering and System Safety; 2018.

    Google Scholar 

  7. API. Security risk assessment methodology for the petroleum and petrochemical industries. In: 780 ARP, editor. 2013.

    Google Scholar 

  8. Conitzer V, Sandholm T, editors. Computing the optimal strategy to commit to. In: Proceedings of the 7th ACM conference on Electronic commerce. ACM; 2006.

    Google Scholar 

  9. Nguyen TH, Jiang AX, Tambe M, editors. Stop the compartmentalization: unified robust algorithms for handling uncertainties in security games. In: Proceedings of the 2014 international conference on autonomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems; 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Reniers, G. (2018). Multi-plant Protection: A Game-Theoretical Model for Improving Chemical Clusters Patrolling. In: Game Theory for Managing Security in Chemical Industrial Areas. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-92618-6_6

Download citation

Publish with us

Policies and ethics