Skip to main content

Time-Dependent Reliability Analysis in Operation: Prognostics and Health Management

  • Chapter
  • First Online:

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Over the past few decades, rapid adoption of sensing, computing, and communications technologies has created one of the key capabilities of modern engineered systems: the ability to—at a low cost—to gather, store, and process large volumes of sensor data from an engineered system during operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “online” indicates a state where a (testing) system unit is operating in the field and its RUL is unknown and needs to be predicted.

  2. 2.

    The term “offline” indicates a state where a (training) system unit is operating in the lab or field and often runs to failure (thus, its RUL at any time is known) prior to the operation of any system units online.

References

  1. Bond, L. J. (2015). From NDT to prognostics: Advanced technologies for improved quality, safety and reliability, Invited Keynote. In 12th Far East NDT Forum, Zhuhai, China, May 29–31, 2015.

    Google Scholar 

  2. Bond, L. J., Doctor, S. R., Jarrell, D. B., & Bond, J. W. D. (2008). Improved economics of nuclear plant life management. In Proceedings of the 2nd IAEA International Symposium on Nuclear Power Plant Life Management, International Atomic Energy Agency, Shanghai, China, IAEA Paper IAEA-CN-155-008KS.

    Google Scholar 

  3. Global industry estimates based on “Industrial Internet: Pushing the Boundaries of Minds & Machines”. November 26, 2012.

    Google Scholar 

  4. Wang, P., Youn, B. D., & Hu, C. (2014). A probabilistic detectability-based sensor network design method for system health monitoring and prognostics. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X14541496.

    Article  Google Scholar 

  5. Wang, P., Wang, Z., Youn, B. D., & Lee, S. (2015). Reliability-based robust design of smart sensing systems for failure diagnostics using piezoelectric materials. Computers & Structures, 156, 110–121.

    Article  Google Scholar 

  6. Youn, B. D., & Xi, Z. (2009). Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Structural and Multidisciplinary Optimization, 37(5), 475–492.

    Article  Google Scholar 

  7. Youn, B. D., Choi, K. K., Du, L., & Gorsich, D. (2007). Integration of possibility-based optimization and robust design for epistemic uncertainty. ASME Journal of Mechanical Design, 129(8).

    Article  Google Scholar 

  8. Adjiman, C. S., Androulakis, I. P., & Floudas, C. A. (2000). Global optimization of mixed-integer nonlinear problems. AIChE Journal, 46(9), 1769–1797.

    Article  Google Scholar 

  9. Wei, J., & Realff, J. (2004). Sample average approximation methods for stochastic MINLPs. Computers & Chemical Engineering, 28(3), 333–346.

    Article  Google Scholar 

  10. New technology captures freely available vibration energy to power wireless sensor. https://energy.gov/eere/amo/vibration-power-harvesting. Accessed February 25, 2018.

  11. McFadden, P. D. (1987). A revised model for the extraction of periodic waveforms by time domain averaging. Mechanical Systems and Signal Processing, 1, 83–95.

    Article  Google Scholar 

  12. Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20, 1483–1510.

    Article  Google Scholar 

  13. Bechhoefer, E., & Kingsley, M. (2009). A review of time synchronous average algorithms. In Annual Conference of the Prognostics and Health Management Society, San Diego, CA.

    Google Scholar 

  14. Ha, J. M., Youn, B. D., Oh, H., Han, B., & Jung, Y. (2016). Autocorrelation-based time synchronous averaging for health monitoring of planetary gearboxes in wind turbines. Mechanical Systems and Signal Processing, 70–71, 161–175.

    Article  Google Scholar 

  15. McFadden, P. D. (1989). Interpolation techniques for time domain averaging of gear vibration. Mechanical Systems and Signal Processing, 3, 87–97.

    Article  Google Scholar 

  16. Strum, R. D., & Kirk, D. E. (1989). First principles of discrete systems and digital signal processing. Reading, MA: Addison-Wesley.

    Google Scholar 

  17. Yin, L., Yang, M., Gabbouj, M., & Neuvo, Y. (1996). Weighted median filters: A tutorial. IEEE Transactions on Circuits and Systems, 40, 157–192.

    Google Scholar 

  18. Ganguli, R. (2002). Noise and outlier removal from jet engine health monitoring signals using weighted FIR median hybrid filters. Mechanical Systems and Signal Processing, 16(6), 867–978.

    Article  Google Scholar 

  19. Neerjarvi, J., Varri, A., Fotopoulos, S., & Neuvo, Y. (1993). Weighted FMH filters. Signal Processing, 31, 181–190.

    Article  MATH  Google Scholar 

  20. Hu, C., Youn B. D., Kim, T. J., & Wang, P. (2015). Semi-supervised learning with co-training for data-driven prognostics. Mechanical Systems and Signal Processing, 62–63, 75–90.

    Google Scholar 

  21. Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153–183.

    Article  Google Scholar 

  22. Gröchenig, K. (2001). Foundations of time-frequency analysis. Boston: Birkhäuser.

    Book  MATH  Google Scholar 

  23. Mallat, S. G. (1999). A wavelet tour of signal process (2nd ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  24. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  25. Cohen, L. (1995). Time-frequency analysis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  26. Dahl, G., Ranzato, M., Mohamed, A.-R., & Hinton, G. E. (2010). Phone recognition with the mean-covariance restricted boltzmann machine. In Advances in neural information processing systems (pp. 469–477). New York: Curran Associates, Inc.

    Google Scholar 

  27. Hinton, G., Deng, L., Yu, D., Mohamed, A.-R., Jaitly, N., Senior, A., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

    Article  Google Scholar 

  28. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (Vol. 25, pp. 1106–1114). New York: Curran Associates, Inc.

    Google Scholar 

  30. Mikolov, T., Deoras, A., Kombrink, S., Burget, L., & Cernocký, J. (2011). Empirical evaluation and combination of advanced language modeling techniques. In INTERSPEECH, ISCA (pp. 605–608).

    Google Scholar 

  31. Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A. (2011) Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Advances in neural information processing systems (pp. 801–809). New York: Curran Associates, Inc.

    Google Scholar 

  32. Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1).

    Article  MATH  Google Scholar 

  34. Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals of Eugenics, 8, 376–386.

    Article  MATH  Google Scholar 

  35. Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). USA: Academic Press.

    MATH  Google Scholar 

  36. Huang, R., Xi, L., Li, X., Richard Liu, C., Qiu, H., & Lee, J. (2007). Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing, 21, 193–207.

    Article  Google Scholar 

  37. Samanta, B. (2004). Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 18, 625–644.

    Article  Google Scholar 

  38. Srinivasan, S., Kanagasabapathy, P., & Selvaganesan, N. (2007). Fault diagnosis in deaerator using neural networks. Iranian Journal of Electrical and Computer Engineering, 6, 62.

    Google Scholar 

  39. Saxena, A., & Saad, A. (2007). Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Applied Soft Computing, 7, 441–454.

    Article  Google Scholar 

  40. Yang, B. S., Hwang, W. W., Kim, D. J., & Chit Tan, A. (2005). Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mechanical Systems and Signal Processing, 19, 371–390.

    Article  Google Scholar 

  41. Saimurugan, M., Ramachandran, K. I., Sugumaran, V., & Sakthivel, N. R. (2011). Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine. Expert Systems with Applications, 38(4), 3819–3826.

    Article  Google Scholar 

  42. Ge, M., Du, R., Zhang, G., & Xu, Y. (2004). Fault diagnosis using support vector machine with an application in sheet metal stamping operations. Mechanical Systems and Signal Processing, 18, 143–159.

    Article  Google Scholar 

  43. Xue, F., Bonissone, P., Varma, A., Yang, W., Eklund, N., & Goebel, K. (2008). An instance-based method for remaining useful life estimation for aircraft engines. Journal of Failure Analysis and Prevention, 8(2), 199–206.

    Article  Google Scholar 

  44. Nie, L., Azarian, M. H., Keimasi, M., & Pecht, M. (2007). Prognostics of ceramic capacitor temperature-humidity-bias reliability using mahalanobis distance analysis. Circuit World, 33(3), 21–28.

    Article  Google Scholar 

  45. Baurle, R. A., & Gaffney, R. L. (2008). Extraction of one-dimensional flow properties from multidimensional data sets. Journal of Propulsion and Power, 24(24), 704–714.

    Article  Google Scholar 

  46. Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In International Conference on Prognostics and Health Management, Denver, CO, October 6–9, 2008.

    Google Scholar 

  47. Saha, B., Goebel, K, Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transaction on Instrumentation and Measurement, 58(2), 291–296.

    Article  Google Scholar 

  48. Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005). Residual-life distributions from component degradation signals: A Bayesian approach. IIE Transactions on Reliability, 37(6), 543–557.

    Article  Google Scholar 

  49. Kwon, D., Azarian, M., & Pecht, M. (2008). Detection of solder joint degradation using RF impedance analysis. In IEEE Electronic Components and Technology Conference, Lake Buena Vista, FL, 27–30 May (pp. 606–610).

    Google Scholar 

  50. Abbasion, S., Rafsanjani, A., Farshidianfar, A., & Irani, N. (2007). Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mechanical Systems and Signal Processing, 21, 2933–2945.

    Article  Google Scholar 

  51. Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture, 44, 1179–1187.

    Article  Google Scholar 

  52. Geramifard, O., Xu, T. X., Pang, C., Zhou, J., & Li, X. (2010). Data-driven approaches in health condition monitoring—A comparative study. In 8th IEEE International Conference on Control and Automation (ICCA) (pp. 1618–1622).

    Google Scholar 

  53. Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151, A196.

    Article  Google Scholar 

  54. Santhanagopalan, S., Zhang, Q., Kumaresan, K., & White, R. E. (2008). Parameter estimation and life modeling of lithium-ion cells. Journal of the Electrochemical Society, 155(4), A345–A353.

    Article  Google Scholar 

  55. Yang, L., Agyakwa, P., & Johnson, C. M. (2013). Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules. IEEE Transactions on Device and Materials Reliability, 13(1), 9–17.

    Article  Google Scholar 

  56. Shao, J., Zeng, C., & Wang, Y. (2010). Research progress on physics-of-failure based fatigue stress-damage model of solderjoints in electronic packing. In Proceedings of Prognostics and Health Management Conference, January 10–12, 2010 (pp. 1–6).

    Google Scholar 

  57. Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings, F140(2), 107–113.

    Article  Google Scholar 

  58. Kitagawa, G. (1996). Monte carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.

    MathSciNet  Google Scholar 

  59. Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–189.

    Article  Google Scholar 

  60. Tavare, S., Balding, D., Griffiths, R., & Donnelly, P. (1997). Inferring coalescence times from DNA sequence data. Genetics, 145, 505–518.

    Google Scholar 

  61. Weiss, G., & von Haeseler, A. (1998). Inference of population history using a likelihood approach. Genetics, 149, 1539–1546.

    Google Scholar 

  62. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21(6), 1087–1092.

    Google Scholar 

  63. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  64. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741.

    Article  MATH  Google Scholar 

  65. Liu, J. S. (1994). The collapsed Gibbs sampler in bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association, 89(427), 958–966.

    Article  MathSciNet  MATH  Google Scholar 

  66. Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal distributions. Journal of the American Statistical Association, 81, 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  67. Tierney, L., Kass, R. E., & Kadane, J. B. (1989). Approximate marginal densities of nonlinear functions. Biometrika, 76(3), 425–433.

    Article  MathSciNet  MATH  Google Scholar 

  68. Azevedo-Filho, A., & Shachter, R. (1994). Laplace’s method approximations for probabilistic inference in belief networks with continuous variables. In R. Mantaras & D. Poole (Eds.), Uncertainty in artificial intelligence. San Francisco, CA: Morgan Kauffman.

    Google Scholar 

  69. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

    Article  Google Scholar 

  70. Jazwinski, A. H. (1970). Stochastic processes and filtering theory. San Diego, CA: Academic.

    MATH  Google Scholar 

  71. Sorenson, H. W. (Ed.). (1985). Kalman filtering: Theory and application. Piscataway, NJ: IEEE.

    Google Scholar 

  72. Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of IEEE, 92, 401–422.

    Article  Google Scholar 

  73. Arulampalam, S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transaction on Signal Processing, 50(2), 174–188.

    Article  Google Scholar 

  74. Cappe, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. IEEE Proceedings, 95(5), 899–924.

    Article  Google Scholar 

  75. Hu, C., Jain, G., Tamirisa, P., & Gorka, T. (2014). Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Applied Energy, 126, 182–189.

    Article  Google Scholar 

  76. Honkura, K., Takahashi, K., & Horiba, T. (2011). Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis. Journal of Power Sources, 196(23), 10141–10147.

    Article  Google Scholar 

  77. Brown, J., Scott, E., Schmidt, C., & Howard, W. (2006). A practical longevity model for lithium-ion batteries: De-coupling the time and cycle-dependence of capacity fade. In 208th ECS Meeting, Abstract #239.

    Google Scholar 

  78. Wang, P., Youn, B. D., & Hu, C. (2012). A generic probabilistic framework for structural health prognostic and uncertainty management. Mechanical Systems and Signal Processing, 28, 622–637.

    Article  Google Scholar 

  79. Hu, C., Youn, B. D., Wang, P., & Yoon, J. T. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering & System Safety, 103, 120–135.

    Article  Google Scholar 

  80. Orchard, M., Kacprzynski, G., Goebel, K., Saha, B., & Vachtsevanos, G. (2008). Advances in uncertainty representation and management for particle filtering applied to prognostics. In International Conference on Prognostics and Health Management, 2008. PHM 2008, October 2008 (pp. 1–6).

    Google Scholar 

  81. Tang, L., Kacprzynski, G., Goebel, K., & Vachtsevanos, G. (2009). Methodologies for uncertainty management in prognostics. In 2009 IEEE Aerospace Conference, March 2009 (pp. 1–12).

    Google Scholar 

  82. Sankararaman, S., & Goebel, K. (2015). Uncertainty in prognostics and systems health management. International Journal of Prognostics and Health Management, 6, Special Issue on Uncertainty in Prognostics and Health Management.

    Google Scholar 

  83. He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314–10321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, C., Youn, B.D., Wang, P. (2019). Time-Dependent Reliability Analysis in Operation: Prognostics and Health Management. In: Engineering Design under Uncertainty and Health Prognostics. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-92574-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92574-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92572-1

  • Online ISBN: 978-3-319-92574-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics