Skip to main content

Reliability Analysis Techniques (Time-Independent)

  • Chapter
  • First Online:
Engineering Design under Uncertainty and Health Prognostics

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Reliability analysis under uncertainty, which assesses the probability that a system’s performance (e.g., fatigue, corrosion, fracture) meets its marginal value while taking into account various uncertainty sources (e.g., material properties, loads, geometries), has been recognized as having significant importance in product design and process development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haldar, A., & Mahadevan, S. (2000). Probability, reliability, and statistical methods in engineering design. New York: Wiley.

    Google Scholar 

  2. Hasofer, A. M., & Lind, N. C. (1974). Exact and invariant second-moment code format. Journal of Engineering Mechanics Division ASCE, 100, 111–121.

    Google Scholar 

  3. Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, ASCE, 110(3), 357–366.

    Article  Google Scholar 

  4. Tvedt, L. (1984). Two second-order approximations to the failure probability. Section on structural reliability. Hovik, Norway: A/S vertas Research.

    Google Scholar 

  5. Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. New York: Wiley.

    Book  Google Scholar 

  6. Fu, G., & Moses, F. (1988). Importance sampling in structural system reliability. In Proceedings of ASCE Joint Specialty Conference on Probabilistic Methods, Blacksburg, VA (pp. 340–343).

    Google Scholar 

  7. Au, S. K., & Beck, J. L. (1999). A new adaptive importance sampling scheme for reliability calculations. Structural Safety, 21(2), 135–158.

    Article  Google Scholar 

  8. Hurtado, J. E. (2007). Filtered importance sampling with support vector margin: A powerful method for structural reliability analysis. Structural Safety, 29(1), 2–15.

    Article  MathSciNet  Google Scholar 

  9. Naess, A., Leira, B. J., & Batsevych, O. (2009). System reliability analysis by enhanced Monte Carlo simulation. Structural Safety, 31(5), 349–355.

    Article  Google Scholar 

  10. Rahman, S., & Xu, H. (2004). A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 19, 393–408.

    Article  Google Scholar 

  11. Xu, H., & Rahman, S. (2004). A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. International Journal of Numerical Methods in Engineering, 61, 1992–2019.

    Article  Google Scholar 

  12. Youn, B. D., Zhimin, X., & Wang, P. (2007). Eigenvector Dimension Reduction (EDR) method for sensitivity-free probability analysis. Structural and Multidisciplinary Optimization, 37, 13–28.

    Article  MathSciNet  Google Scholar 

  13. Ghanem, R. G., & Spanos, P. D. (1991). Stochastic finite elements: A spectral approach. New York: Springer.

    Book  Google Scholar 

  14. Wiener, N. (1938). The homogeneous chaos. American Journal of Mathematics, 60(4), 897–936.

    Article  MathSciNet  Google Scholar 

  15. Xiu, D., & Karniadakis, G. E. (2002). The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(2), 619–644.

    Article  MathSciNet  Google Scholar 

  16. Smolyak, S. (1963). Quadrature and interpolation formulas for tensor product of certain classes of functions. Soviet Mathematics—Doklady, 4, 240–243.

    Google Scholar 

  17. Grestner, T., & Griebel, M. (2003). Dimension-adaptive tensor-product quadrature. Computing, 71(1), 65–87.

    Article  MathSciNet  Google Scholar 

  18. Klimke, A. (2006). Uncertainty modeling using fuzzy arithmetic and sparse grids (Ph.D. thesis). Universität Stuttgart, Shaker Verlag, Aachen.

    Google Scholar 

  19. Ganapathysubramanian, B., & Zabaras, N. (2007). Sparse grid collocation schemes for stochastic natural convection problems. Journal of Computational Physics, 225(1), 652–685.

    Article  MathSciNet  Google Scholar 

  20. Law, A. M., & Kelton, W. D. (1982). Simulation modeling and analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  21. Rabitz, H., Alis, O. F., Shorter, J., & Shim, K. (1999). Efficient input–output model representations. Computer Physics Communications, 117(1–2), 11–20.

    Article  Google Scholar 

  22. Xu, H., & Rahman, S. (2005). Decomposition methods for structural reliability analysis. Probabilistic Engineering Mechanics, 20, 239–250.

    Article  Google Scholar 

  23. Rabitz, H., & Alis, O. F. (1999). General foundations of high dimensional model representations. Journal of Mathematical Chemistry, 25(2–3), 197–233.

    Article  MathSciNet  Google Scholar 

  24. Alis, O. F., & Rabitz, H. (2001). Efficient implementation of high dimensional model representations. Journal of Mathematical Chemistry, 29(2), 127–142.

    Article  MathSciNet  Google Scholar 

  25. Li, G., Rosenthal, C., & Rabitz, H. (2001). High dimensional model representations. Journal of Physical Chemistry A, 105, 7765–7777.

    Article  Google Scholar 

  26. Li, G., Wang, S. W., & Rabitz, H. (2001). High dimensional model representations generated from low dimensional data samples—I: Mp-Cut-HDMR. Journal of Mathematical Chemistry, 30(1), 1–30.

    Article  MathSciNet  Google Scholar 

  27. Sobol, I. M. (2003). Theorems and examples on high dimensional model representations. Reliability Engineering and System Safety, 79(2), 187–193.

    Article  Google Scholar 

  28. Griebel, M., & Holtz, M. (2010). Dimension-wise integration of high-dimensional functions with applications to finance. Journal of Complexity, 26(5), 455–489.

    Article  MathSciNet  Google Scholar 

  29. Kuo, F. Y., Sloan, I. H., Wasilkowski, G. W., & Wozniakowski, H. (2010). On decompositions of multivariate functions. Mathematics of Computation, 79, 953–966.

    Article  MathSciNet  Google Scholar 

  30. Youn, B. D., Choi, K. K., & Yi, K. (2005). Reliability-based robust design optimization using the performance moment integration method and case study of engine gasket-sealing problem. In Proceedings of SAE 2005 World Congress, Detroit, MI, United States.

    Google Scholar 

  31. Youn, B. D., Choi, K. K., & Yi, K. (2005). Performance Moment Integration (PMI) method for quality assessment in reliability-based robust design optimization. Mechanics Based Design of Structures and Machines, 33, 185–213.

    Article  Google Scholar 

  32. Lee, S. H., Chen, W., & Kwak, B. M. (2009). Robust design with arbitrary distributions using Gauss-type quadrature formula. Structural and Multidisciplinary Optimization, 39(3), 227–243.

    Article  MathSciNet  Google Scholar 

  33. Cameron, R. H., & Martin, W. T. (1947). The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals. Annals of Mathematics, 48, 385–392.

    Article  MathSciNet  Google Scholar 

  34. Le Maître, O. P., Knio, O. M., Najm, H. N., & Ghanem, R. G. (2001). A stochastic projection method for fluid flow—I. Basic formulation. Journal of Computational Physics, 173, 481–511.

    Article  MathSciNet  Google Scholar 

  35. Le Maître, O. P., Reagan, M., Najm, H. N., Ghanem, R. G., & Knio, O. M. (2002). A stochastic projection method for fluid flow—II. Random process. Journal of Computational Physics, 181, 9–44.

    Article  MathSciNet  Google Scholar 

  36. Field, R. V. (2002). Numerical methods to estimate the coefficients of the polynomial chaos expansion. In Proceedings of the 15th ASCE Engineering Mechanics Conference.

    Google Scholar 

  37. Xiu, D. (2009). Fast numerical methods for stochastic computations: A review. Communications in Computational Physics, 5, 242–272.

    MathSciNet  MATH  Google Scholar 

  38. Gerstner, T., & Griebel, M. (1998). Numerical integration using sparse grids. Numerical Algorithms, 18(3), 209–232.

    Article  MathSciNet  Google Scholar 

  39. Ma, X., & Zabaras, N. (2009). An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics, 228, 3084–3113.

    Article  MathSciNet  Google Scholar 

  40. Berveiller, M. (2005). Stochastic finite elements: Intrusive and non intrusive methods for reliability analysis (Ph.D. thesis). Universite’ Blaise Pascal, Clermont-Ferrand.

    Google Scholar 

  41. Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93, 964–979.

    Article  Google Scholar 

  42. Paffrath, M., & Wever, U. (2007). Adapted polynomial chaos expansion for failure detection. Journal of Computational Physics, 226, 263–281.

    Article  MathSciNet  Google Scholar 

  43. Creveling, C. M. (1997). Tolerance design: A handbook for developing optimal specification. Cambridge, MA: Addison-Wesley.

    Google Scholar 

  44. Wu, C. C., Chen, Z., & Tang, G. R. (1998). Component tolerance design for minimum quality loss and manufacturing cost. Computers in Industry, 35, 223–232.

    Article  Google Scholar 

  45. Hu, C., & Youn, B. D. (2011). An asymmetric dimension-adaptive tensor-product method for reliability analysis. Structural Safety, 33(3), 218–231.

    Article  Google Scholar 

  46. Lee, S. H., & Chen, W. (2009). A comparative study of uncertainty propagation methods for black-box-type problems. Structural and Multidisciplinary Optimization, 37(3), 239–253.

    Article  Google Scholar 

  47. Kvasov, B. I. (2000). Methods of shape-preserving spline approximation. Singapore: World Scientific Publications Co., Inc.

    Book  Google Scholar 

  48. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions (9th ed.). New York: Dover Publications, Inc.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Hu .

Appendix: A 99-Line MATLAB Code for UDR-Based SRSM

Appendix: A 99-Line MATLAB Code for UDR-Based SRSM

%    A   99-LINE   UDR-BASED   SRSM   CODE   WRITTEN   BY   HU   C.,   Wang   P.,   AND   YOUN   B.D.      % function    UDR_RS() clear    all;    close    all; u   =   [0.4    0.4];                      %% Mean   vector   of   random   variables s   =   [0.01 0.01];                     %% Standard   deviation   vector

%========================  Generate MCS samples  =========================% ns = 5000000;                     %% Number of MCS samples nv = length(u);                   %% Number of input random variables xs = zeros(nv,ns);                %% Initialization of MCS sample vector for k = 1:nv       xs(k,:) = normrnd(u(k),s(k),1,ns); end

%=====================  Obtain Univariate Samples  =======================% [output,input,gg] = UDR_sampling(u,s);

%================  Compute Univariate Response Surface  ==================% % Step 1: obtain univariate component function values uniComp = zeros(nv,ns); for k = 1:nv      uniComp(k,:) = interp1(input(k,:),output(k,:),xs(k,:),′spline′); end % Step 2: combine univariate responses with UDR formula zz = squeeze(uniComp(:,:)); response_URS = sum(zz,1)-(nv-1)*gg;

%===============  Compute True Responses by Direct MCS  ==================% response_true = findresponse(xs);

%==================  Conduct Reliability Analysis  =======================% rel_URS = length(find(response_URS < 0))/ns rel_true = length(find(response_true < 0))/ns

%===============  Plot Probability Density Functions  ====================% % Plot PDF computed from univariate response surface figure(′DefaultAxesFontSize′,16) D = response_URS; [cn,xout] = hist(D,100); sss = sum(cn); unit=(xout(100)-xout(1))/99; for k = 1:100       cn(k)=cn(k)/sss/unit; end plot(xout,cn,′k-′); hold on; clear D cn xout;

% Plot true PDF from direct MCS D = response_true; [cn,xout] = hist(D,100); sss = sum(cn); unit=(xout(100)-xout(1))/99; for k = 1:100     cn(k)=cn(k)/sss/unit; end plot(xout,cn,′r*′); hold on; clear D cn xout; legend(′UDR-SRSM′,′MCS′);  xlabel(′{\itG}({\bfX})′); ylabel(′Probability density′);

%==================  Obtain Univariate Samples  ==========================% function [output,input,gg] = UDR_sampling(u,s) u_loc = [-3.0,-1.5,0,1.5,3.0]; %% Sample locations: [u+/-3.0s, u+/-1.5s, u] nv = length(u);                    %% Dimension of the problem m = length(u_loc);              %% Number of samples along each dimension input = zeros(nv,m); for k = 1:nv      % Identify sample location      input(k,:) = u(k) + u_loc*s(k);      % Get response values      xx = u;      for kk = 1:m            xx(k) = input(k,kk);            if isequal(k,1) && isequal(xx,u)  %% Avoid re-evaluating mean value                  output(k,kk) = findresponse(xx);                 gg = output(k,kk);            elseif ~isequal(k,1) && isequal(xx,u)                 output(k,kk) = gg;            else                 output(k,kk) = findresponse(xx);            end      end end

%=================== Define Performance Function ========================% function response = findresponse(xx) if isvector(xx) == 1      response = 0.75*exp(-0.25*(9*xx(1)-2)^2-0.25*(9*xx(2)-2)^2)....            +0.75*exp(-(9*xx(1)+1)^2/49-(9*xx(2)+1)/10)....            +0.50*exp(-0.25*(9*xx(1)-7)^2-0.25*(9*xx(2)-3)^2)....            -0.20*exp(-(9*xx(1)-4)^2-(9*xx(2)-7)^2) - 0.6; else      response = 0.75*exp(-0.25*(9*xx(1,:)-2).^2-0.25*(9*xx(2,:)-2).^2)....            +0.75*exp(-(9*xx(1,:)+1).^2/49-(9*xx(2,:)+1)/10)....            +0.50*exp(-0.25*(9*xx(1,:)-7).^2-0.25*(9*xx(2,:)-3).^2)....            -0.20*exp(-(9*xx(1,:)-4).^2-(9*xx(2,:)-7).^2) - 0.6; end

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, C., Youn, B.D., Wang, P. (2019). Reliability Analysis Techniques (Time-Independent). In: Engineering Design under Uncertainty and Health Prognostics. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-92574-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92574-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92572-1

  • Online ISBN: 978-3-319-92574-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics