Skip to main content

“Polymer–Oxide” Micro-/Nanocomposites: Background and Promises

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Abstract

The small review of published data, the results that have been published recently by the author’s research team, and our new findings are presented in this chapter. We deal here mainly with data that are related with optical, especially luminescent, properties noted in the chapter title materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1. https://doi.org/10.1590/S1516-14392009000100002

    Article  Google Scholar 

  2. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites: a review. Mater Sci Eng A 393:1. https://doi.org/10.1016/j.msea.2004.09.044

    Article  Google Scholar 

  3. Vaia RA, Wagner HD (2004) Framework for nanocomposites. Mater Today 7:32. https://doi.org/10.1016/S1369-7021(04)00506-1

    Article  Google Scholar 

  4. Nalwa HS (2000) Hand book of nanostructured materials and technology. Academic Press, New York eBook ISBN: 9780080533643

    Google Scholar 

  5. Ajayan PM, Schadler L, Braun PV (2003) Nanocomposites science and technology. Wiley-VCH, Verlag Gmbh & Co. KgaA, Weinheim

    Book  Google Scholar 

  6. Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4:323. https://doi.org/10.1016/0167-577X(86)90063-7

    Article  MathSciNet  Google Scholar 

  7. Kamigaito O (1991) What can be improved by nanometer composites? J Jpn Soc Powder Metall 38:321. https://doi.org/10.2497/jjspm.38.315

    Article  Google Scholar 

  8. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23:763. https://doi.org/10.1016/j.msec.2003.09.148

    Article  Google Scholar 

  9. Zavyalov SA, Pivkina AN, Schoonman J (2002) Formation and characterization of metal-polymer nanostructured composites. Solid State Ionics 147:415. https://doi.org/10.1016/S0167-2738(02)00038-3

    Article  Google Scholar 

  10. Thompson CM, Herring HM, Gates TS, Connel JW (2003) Preparation and characterization of metal oxide/polyamide nanocomposites. Compos Sci Technol 63(11):1591–1598. https://doi.org/10.1016/S0266-3538(03)00062-9

    Article  Google Scholar 

  11. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1. https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  12. Ogawa M, Kuroda K (1997) Preparation of inorganic composites through intercalation of organo-ammonium ions into layered silicates. Bull Chem Soc Jpn 70:2593. https://doi.org/10.1246/bcsj.70.2593

    Article  Google Scholar 

  13. Jeon HG, Jung HT, Lee SW, Hudson SD (1998) Morphology of polymer silicate nanocomposites. High density polyethylene and a nitrile copolymer. Polym Bull 41:107. https://doi.org/10.1007/s002890050339

    Article  Google Scholar 

  14. Evora VMF, Shukla A (2003) Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater Sci Eng 361:358

    Article  Google Scholar 

  15. Di Lorenzo ML, Errico ME, Avella M, Di Lorenzo ML, Errico ME, Avella M (2002) Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites. J Mater Sci 37:2351. https://doi.org/10.1023/A:1015358425449

    Article  ADS  Google Scholar 

  16. Park SS, Bernet N, de La Roche S, Hanh HT (2003) Thermal and morphological characterization of poly (ethylene terephthalate)/calcium carbonate nanocomposites. J Compos Mater 37:465. https://doi.org/10.1177/0021998303037005036

    Article  Google Scholar 

  17. Dutta A, Das D, Grilli ML, Di Bartolomeo E, Traversa E, Chakravorty D (2003) Preparation of sol-gel nano-composites containing copper oxide and their gas sensing properties. J Sol-Gel Sci Technol 26:1085. https://doi.org/10.1023/A:1020706707243

    Article  Google Scholar 

  18. Herron N, Thorn DL (1998) Nanoparticles: uses and relationships to molecular cluster compounds. Adv Mater 10:1173. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15

    Article  Google Scholar 

  19. Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6:205. https://doi.org/10.1016/S1359-0286(02)00049-9

    Article  ADS  Google Scholar 

  20. Ray SS, Okamoto M (2003) Polymer - layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  21. Liu SH, Qian XF, Yuan JY, Yin J, He R, Zhu ZK (2003) Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature. Mater Res Bull 38:1359. https://doi.org/10.1016/S0025-5408(03)00148-X

    Article  Google Scholar 

  22. Trindade T, Neves MC, Barros AMV (2000) Preparation and optical properties of CdSe/polymer nanocomposites. Scr Mater 43:567. https://doi.org/10.1016/s1359-6462(00)00437-1

    Article  Google Scholar 

  23. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer- layered silicate nanocomposites. Chem Mater 8:1728. https://doi.org/10.1021/cm960127g

    Article  Google Scholar 

  24. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302. https://doi.org/10.1021/cm960441a

    Article  Google Scholar 

  25. Ninjbadgar T, Garnweitner G, Bo¨rger A, Goldenberg ML, Sakhno VO, Stumpe J (2009) Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic submicrometer patterning in polymer composites. Adv Funct Mater 19:1819. https://doi.org/10.1002/adfm.200801835

    Article  Google Scholar 

  26. Ryszkowska J, Zawadzka EA, Hreniak D, Lojkowski W, Opalinska A, Kurzydlowski KJ (2007) Structure and properties of polyurethane nanocomposites with zirconium oxide including Eu. J Mater Sci Eng C 27:994. https://doi.org/10.1016/j.msec.2006.09.046

    Article  Google Scholar 

  27. Althues H, Simon P, Kaskel S (2007) Transparent and luminescent YVO4:Eu/polymer nanocomposites prepared by in situ polymerization. J Mater Chem 17:758. https://doi.org/10.1039/B611917D

    Article  Google Scholar 

  28. Goubard F, Vidal F, Bazzi R, Tillement O, Chevrot C, Teyssie D (2007) Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films. J Lumin 126:289. https://doi.org/10.1016/j.jlumin.2006.07.009

    Article  Google Scholar 

  29. Tucureanu V, Matei A, Avram AM (2015) Synthesis and characterization of YAG:Ce phosphors for white LEDs. Opto−Electron Rev 23:239. https://doi.org/10.1515/oere-2015-0038

    Article  Google Scholar 

  30. Klampaftis E, Rossa D, McIntoshb KR, Richards BS (2009) Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol Energy Mater Sol Cells 93:1182. https://doi.org/10.1016/j.solmat.2009.02.020

    Article  Google Scholar 

  31. Ramasamy P, Manivasakan P, Kim J (2014) Upconversion nanophosphors for solar cell applications. RSC Adv 4:34873. https://doi.org/10.1039/C4RA03919J

    Article  Google Scholar 

  32. Dudek M, Jusza A, Lipińska L (2011) Luminescent properties of praseodymium doped Y2O3 and LaAlO3 nanocrystallites and polymer composites. J Rare Earths 29:1123. https://doi.org/10.1016/S1002-0721(10)60610-2

    Article  Google Scholar 

  33. Anders K, Jusza A, Baran M, Lipińska L, Piramidowicz R (2012) Emission properties of polymer composites doped with Er3+:Y2O3 nanopowders. Opt Mater 34:1964. https://doi.org/10.1016/j.optmat.2011.11.011

    Article  ADS  Google Scholar 

  34. Vistovsky V, Mitina N, Shapoval A, Malyy T, Gektin A, Konstantinova T, Voloshinovskii A, Zaichenko A (2012) Luminescence properties of LaPO4–Eu nanoparticles synthesized in the presence of surface active oligoperoxide as template. Opt Mater 34:2066. https://doi.org/10.1016/j.optmat.2012.04.010

    Article  ADS  Google Scholar 

  35. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasses agro-waste. J Mater Phys Chem 2:1. https://doi.org/10.12691/jmpc-2-1-1

    Article  Google Scholar 

  36. Moon RJ, Martini A, Nairn A, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941. https://doi.org/10.1039/C0CS00108B

    Article  Google Scholar 

  37. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459. https://doi.org/10.1007/s10570-010-9405-y

    Article  Google Scholar 

  38. Ummartyotin S, Pechyen C (2016) Microcrystalline-cellulose and polypropylene based composite: a simple, selective and effective material for microwavable packaging. Carbohydr Polym 142:133. https://doi.org/10.1016/j.carbpol.2016.01.020

    Article  Google Scholar 

  39. Zhou Z, Wang Q (2012) Two emissive cellulose hydrogels for detection of nitrite using terbium luminescence. Sensors Actuators B 173(833). https://doi.org/10.1016/j.snb.2012.07.117

    Article  Google Scholar 

  40. Nedilko S, Revo S, Nedielko M, Avramenko T, Ivanenko K, Scherbatskii V (2015) Luminescence of the alkali-metals nitrites incorporated into cellulose matrix. Solid State Phenom 230:147. https://doi.org/10.4028/www.scientific.net/SSP.230.147

    Article  Google Scholar 

  41. Nedilko SG, Revo SL, Chornii VP, Scherbatskyi VP, Nedielko MS (2015) Luminescent determination of nitrite traces in water solutions using cellulose as sorbent. J Sens Sens Syst 4:31. https://doi.org/10.5194/jsss-4-31-2015

    Article  Google Scholar 

  42. Karakawa M, Chikamatsu M, Nakamoto C, Maeda Y, Kubota S, Yase K (2007) Organic light-emitting diode application of fluorescent cellulose as a natural polymer. Macromol Chem Phys 208:2000. https://doi.org/10.1002/macp.200700154

    Article  Google Scholar 

  43. Yun S, Jang SD, Yun GY, Kim JH, Kim J (2009) Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose. Appl Phys Lett 95:104102. https://doi.org/10.1063/1.3224200

    Article  ADS  Google Scholar 

  44. Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose. Langmuir 24:5. https://doi.org/10.1021/la702923w

    Article  MathSciNet  Google Scholar 

  45. Bateh RP, Winefordner JD (1982) An evaluation of cellulose as a substrate for room-temperature phosphorescence. Talanta 29:713. https://doi.org/10.1016/0039-9140(82)80083-0

    Article  Google Scholar 

  46. Pikulev V, Loginova S, Gurtov V (2012) Luminescence properties of silicon-cellulose nanocomposite. Nanoscale Res Lett 7:426. https://doi.org/10.1186/1556-276X-7-426

    Article  ADS  Google Scholar 

  47. Tylli H, Forsskahl I, Olkkonen C (2000) The effect of heat and IR radiation on the fluorescence of cellulose. Cellulose 7:133. https://doi.org/10.1023/A:1009225624732

    Article  Google Scholar 

  48. Nedielko M, Hamamda S, Alekseev O, Chornii V, Dashevskii M, Lazarenko M, Kovalov K, Nedilko SG, Tkachov S, Revo S, Scherbatskyi V (2017) Mechanical, dielectric, and spectroscopic characteristics of “micro/Nanocellulose + oxide” composites. Nanoscale Res Lett 12:98. https://doi.org/10.1186/s11671-017-1862-x

    Article  ADS  Google Scholar 

  49. Kulpinski P, Erdman A, Grzyb T, Lis S (2016) Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles. Polym Compos 37:153. https://doi.org/10.1002/pc.23166

    Article  Google Scholar 

  50. Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18:975. https://doi.org/10.1007/s10570-011-9544-9

    Article  Google Scholar 

  51. Kulpinski P, Erdman A, Namyślak M, Fidelus JD (2012) Cellulose fibers modified by Eu3+−doped yttria-stabilized zirconia nanoparticles. Cellulose 19:1259. https://doi.org/10.1007/s10570-012-9704-6

    Article  Google Scholar 

  52. Erdman A, Kulpinski P, Olejnik K (2016) Application of nanocomposite cellulose fibers with luminescent properties to paper functionalization. Cellulose 23:2087. https://doi.org/10.1007/s10570-016-0943-9

    Article  Google Scholar 

  53. Atalla R, Nagel S (1972) Laser-induced fluorescence in cellulose. J Chem Soc Chem Commun 19:1049. https://doi.org/10.1039/C39720001049

    Article  Google Scholar 

  54. Castellan A, Choudhury H, Davidson RS, Grelier S (1994) Comparative study of stone-ground wood pulp and native wood. 2. Comparison of the fluorescence of stone-ground wood pulp and native wood. J Photochem Photobiol A: Chem 81:117. https://doi.org/10.1016/1010-6030(94)03783-3

    Article  Google Scholar 

  55. Korntner P, Hosoya T, Dietz T, Eibinger K, Reiter H, Spitzbart M, Röder T, Borgards A, Kreiner W, Mahler AK, Winter H, Groiss Y, French AD, Henniges U, Potthast A, Rosenau T (2015) Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores Cellulosics XII Cellulose 22:1053. https://doi.org/10.1007/s10570-015-0566-6

    Article  Google Scholar 

  56. Gavrilov MZ, Ermolenko IN (1966) A study of cellulose luminescence. J Appl Spectr 5:542. https://doi.org/10.1007/BF00606982

    Article  Google Scholar 

  57. Olmstead JA, Gray DG (1993) Fluorescence emission from mechanical pulp sheets. J Photochem Photobiol A Chem 73:59. https://doi.org/10.1016/1010-6030(93)80034-7

    Article  Google Scholar 

  58. Macalese DL, Dunlap RB (1984) Reduction of background emission in room-temperature phosphorescence. Anal Chem 56:600

    Article  Google Scholar 

  59. Schmidt J (2010) Electronic spectroscopy of lignins. In: Heitner C, Dimmel D, Schmidt J (eds) Lignins and lignans. CRC Press, Boca Raton, p 683 ISBN 9781574444865 - CAT# DK3286

    Google Scholar 

  60. Nevell TP, Zeronian SH (1987) Cellulose chemistry and its applications. J Polym Sci Part C: Polym Lett 25:87. https://doi.org/10.1002/pol.1987.140250212

    Article  Google Scholar 

  61. Bikova T, Treimanis A (2004) UV-absorbance of oxidized xylan and monocarboxyl cellulose in alkaline solutions. Carbohydr Polym 55:315. https://doi.org/10.1016/j.carbpol.2003.10.005

    Article  Google Scholar 

  62. Castellan A, Ruggiero R, Frollini E, Ramos L, Chirat C (2007) Studies on fluorescence of cellulosics. Holzforschung 61:504. https://doi.org/10.1515/HF.2007.090

    Article  Google Scholar 

  63. Liukko S, Tasapuro V, Liitiä T (2007) Fluorescence spectroscopy for chromophore studies on bleached Kraft pulps. Holzforschung 61:509. https://doi.org/10.1515/HF.2007.107

    Article  Google Scholar 

  64. Davidson RS, Dunn LA, Castellan A, Nourmamode A (1991) A study of the photobleaching and photoyellowing of paper containing lignin using fluorescence spectroscopy. J Photochem Photobiol A: Chem 58:359 ISSN: 1010-6030 CODEN: JPPCEJ

    Google Scholar 

  65. Nedilko S, Mogilevsky R, Sharafutdinova L, Burlay S, Sherbatskii V, Boyko V, Mittl S (2009) Luminescence study of grown sapphire: from starting material to single crystal. Phys Status Solidi 6:S179. https://doi.org/10.1002/pssc.200881323

    Article  Google Scholar 

  66. Mogilevsky R, Nedilko S, Sharafutdinova L, Burlay S, Sherbatskii V, Boyko V, Mittl S (2009) Sapphire: relation between luminescence of starting materials and luminescence of single crystals. Opt Mater 31:1880. https://doi.org/10.1016/j.optmat.2008.11.023

    Article  ADS  Google Scholar 

  67. Mogilevsky R, Nedilko S, Sharafutdinova L, Gavrilov V, Verbilo D, Mittl S (2009) Hydrogen effect on the properties of sapphire. Proc SPIE 7302:11. https://doi.org/10.1117/12.818148

    Article  Google Scholar 

  68. Kulpinski P, Namyslak M, Grzyb T, Lis S (2012) Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. Cellulose 19:1271. https://doi.org/10.1007/s10570-012-9709-1

    Article  Google Scholar 

  69. Ribeiro SJL, Dahmouche K, Ribeiro CA, Santilli CV, Pulcinelli SH (1998) Study of hybrid silica-polyethylene glycol xerogels by Eu3+ luminescence spectroscopy. J Sol-Gel Sci Technol 13:427. https://doi.org/10.1023/A:1008673211834

    Article  Google Scholar 

  70. Chornii V, Nedilko SG, Miroshnichenko M, Terebilenko K, Slobodyanik M (2017) Influence of fluorination on structure and luminescence of ZrO2:Eu nanocrystals. Mater Res Bull 90:237. https://doi.org/10.1016/j.materresbull.2017.02.033

    Article  Google Scholar 

  71. Chornii V, Chukova O, Nedilko SG, Nedilko SA, Voitenko T (2016) Enhancement of emission intensity of LaVO4:RE3+ luminescent solar light absorbers. Phys Status Solidi C 13:40. https://doi.org/10.1002/pssc.201510116

    Article  ADS  Google Scholar 

  72. Hizhnyi Y, Chornii V, Nedilko S, Slobodyanik M, Terebilenko K, Boyko V, Gomenyuk O, Sheludko V (2016) Luminescence spectroscopy of ln-doped bi-containing phosphates and molybdates. Radiat Meas 90:314. https://doi.org/10.1016/j.radmeas.2016.01.014

    Article  Google Scholar 

  73. Driemeier C, Calligaris GA (2011) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. J Appl Crystallogr 44:184. https://doi.org/10.1107/S0021889810043955

    Article  Google Scholar 

  74. Leppeanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999. https://doi.org/10.1007/s10570-009-9298-9

    Article  Google Scholar 

  75. Laue W, Thiemann M, Scheibler E, Wiegand KW (2002) Nitrates and nitrites, Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a17 265

    Book  Google Scholar 

  76. Hizhnyi YA, Nedilko SG, Chornii VP, Slobodyanik MS, Zatovsky IV, Terebilenko KV (2014) Electronic structures and origin of intrinsic luminescence in bi- containing oxide crystals BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4. J Alloys Compd 614:20. https://doi.org/10.1016/j.jallcom.2014.06.111

    Article  Google Scholar 

  77. Pizzoli M, Scandola M, Ceccorulli G (1991) Dielectric and mechanical loss processes in hydroxypropyl cellulose. Plast Rubber Compos Process Appl 16:239 ISSN: 0959-8111

    Google Scholar 

  78. Rials TG, Glasser WG (1988) Thermal and dynamic mechanical-properties of Hydroxypropyl cellulose films. J Appl Polym Sci 36:749

    Article  Google Scholar 

  79. Wojciechowski P (2000) Thermotropic mesomorphism of selected (2-hydroxypropyl) cellulose derivatives. J Appl Polym Sci 76:837. https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<837::AID-APP9>3.0.CO;2-P

    Article  Google Scholar 

  80. Liu X, Zhang Y, Wang Z, Sh L (1988) Luminescence and energy transfer bands of the Sm3+ and Eu3+ in Mg3BO3F3. J Lumin 40:885. https://doi.org/10.1016/j.jlumin.2016.07.043

    Article  Google Scholar 

  81. Malinowski M, Jacquier B, Boulon G (1988) Fluorescence quenching in Sm3+ doped KY(PO4)12 crystals. J Lumin 39:301. https://doi.org/10.1016/0022-2313(88)90011-7

    Article  Google Scholar 

  82. Treadaway M, Powell R (1975) Energy transfer in samarium – doped calcium tungstate crystals. Phys Rev B 11:862

    Article  ADS  Google Scholar 

  83. Maas J, Wollenhaupt M, Arbens H, Frobel P, Barner K (1994) The fluorescence of Sm3+ in lithium molybdate borate glasses. J Lumin 62:95. https://doi.org/10.1016/0022-2313(94)90335-2

    Article  Google Scholar 

  84. Venkatramu V, Babu P, Jayasankar CK, Troster T, Sievers W, Wortmann G (2007) Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Opt Mater 29:1429–1439. https://doi.org/10.1016/j.optmat.2006.06.011

    Article  ADS  Google Scholar 

  85. Elbanowski M, Lis S, Makowska B, Konarski J (1985) Fluorescence of Lanthanide (III) complexes in aqueous solutions. Monatshefte Chem 116:901. https://doi.org/10.1007/BF00815318

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to the leaders of the chemistry groups, Prof. M. Slobodyanyk and Prof. S.A. Nedilko; researchers from these groups, Ass. Prof. K. Terebilenko and Senior researcher T. Voitenko; and PG student A. Slepets for their work on the synthesis of phosphate–molybdate and vanadate compounds, respectively.

Many thanks to senior researcher O. Alekseyev and Ass. Prof. M. Lazarenko for the study of dielectric properties and analysis of the results.

Thanks to leading engineer M. Nedielko for her work on SEM and optical microscopy.

My thanks to senior researcher O. Chukova, junior researcher V. Chornii, and leading engineer V. Scherbatskii for the study of oxides and composite luminescence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Nedilko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nedilko, S.G. (2018). “Polymer–Oxide” Micro-/Nanocomposites: Background and Promises. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_15

Download citation

Publish with us

Policies and ethics