Skip to main content

Classification of Concrete Strength Grade Using Nearest Neighbor Partitioning

  • 3623 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10878)

Abstract

Concrete is an important building material in the field of civil engineering. As an important factor, the strength of concrete affects its quality directly. Although conventional methods are made to forecast concrete strength, the classification of its grade is still an important issue in terms of non-uniformity of mortar and the complexity of curing condition. In this study, the classification of strength grade is implemented by employing the nearest neighbor partitioning method-based neural network classifier, which not only produces flexible decision boundaries but also eliminates centroid-based constraints and further enlarges the opportunity for finding optimal solutions. Experimental results manifest that the adopted method improves the performance of concrete grade classification.

Keywords

  • Neural network
  • Nearest neighbor partitioning
  • Concrete strength

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-92537-0_33
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-92537-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Shi, X.C., Dong, Y.F.: Support vector machine applied to prediction strength of cement. In: 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, pp. 1585–1588 (2011)

    Google Scholar 

  2. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28, 1797–1808 (1998)

    CrossRef  Google Scholar 

  3. Wang, L., Yang, B., Wang, S., Liang, Z.: Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Trans. Evol. Comput. 19, 679–693 (2015)

    CrossRef  Google Scholar 

  4. Wang, L., Yang, B., Abraham, A.: Prediction of concrete strength using floating centroids method. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics. Manchester, pp. 988–992 (2013)

    Google Scholar 

  5. Wang, L., Yang, B., Chen, Y., Abraham, A., Sun, H., Chen, Z., Wang, H.: Improvement of neural network classifier using floating centroids. Knowl. Inf. Syst. 31, 433–454 (2012)

    CrossRef  Google Scholar 

  6. Zhou, J., Chen, L., Chen, C.L.P., Zhang, Y., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    CrossRef  Google Scholar 

  7. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28, 2255–2267 (2017)

    CrossRef  MathSciNet  Google Scholar 

  8. Trtnik, G., Kavcic, F., Turk, G.: Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49, 53–60 (2009)

    CrossRef  Google Scholar 

  9. Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25, 849–857 (2003)

    CrossRef  Google Scholar 

  10. Kim, D.K., Lee, J.J., Lee, J.H., Chang, S.K.: Application of probabilistic neural networks for prediction of concrete strength. J. Mater. Civil Eng. 17, 353–362 (2005)

    CrossRef  Google Scholar 

  11. Gupta, R., Kewalramani, M.A., Goel, A.: Prediction of concrete strength using neural-expert system. J. Mater. Civil Eng. 18, 462–466 (2006)

    CrossRef  Google Scholar 

  12. Rajasekaran, S., Lee, S.C.: Prediction of concrete strength using serial functional network model. Struct. Eng. Mech. 16, 83–99 (2003)

    CrossRef  Google Scholar 

  13. Jongjae, L., Dookie, K., Seongkyu, C., Jangho, L.: Application of support vector regression for the prediction of concrete strength. Comput. Concr. 4, 299–316 (2007)

    CrossRef  Google Scholar 

  14. Lai, S., Serra, M.: Concrete strength prediction by means of neural network. Constr. Build. Mater. 11, 93–98 (1997)

    CrossRef  Google Scholar 

  15. Severcan, M.H.: Prediction of splitting tensile strength from the compressive strength of concrete using gep. Neural Comput. Appl. 21, 1937–1945 (2012)

    CrossRef  Google Scholar 

  16. Yu, Z., Liu, Y., Yu, X., Pu, K.Q.: Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans. Knowl. Data Eng. 27, 1383–1396 (2015)

    CrossRef  Google Scholar 

  17. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    CrossRef  Google Scholar 

  18. Booth, H.S., Maindonald, J.H., Wilson, S.R., Gready, J.E.: An efficient z-score algorithm for assessing sequence alignments. J. Comput. Biol. J. Comput. Mol. Cell Biol. 11, 616–625 (2004)

    CrossRef  Google Scholar 

  19. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 68, pp. 227–236. Springer, Berlin, Heidelberg (1990)

    CrossRef  Google Scholar 

  20. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (2012)

    MATH  Google Scholar 

  21. Li, T., Rogovchenko, Y.V.: Oscillation of second-order neutral differential equations. Mathematische Nachrichten 288, 1150–1162 (2015)

    CrossRef  MathSciNet  Google Scholar 

  22. Li, T., Rogovchenko, Y.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)

    CrossRef  MathSciNet  Google Scholar 

  23. Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Franklin Inst. 354, 4719–4738 (2017)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 81671785, No. 61472164, No. 61472163, No. 61672262. Science and technology project of Shandong Province under Grant No. 2015GGX101025. Project of Shandong Province Higher Educational Science and Technology Program under Grant no. J16LN07. Shandong Provincial Key R&D Program under Grant No. 2016ZDJS01A12, No. 2016GGX101001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Wang or Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X. et al. (2018). Classification of Concrete Strength Grade Using Nearest Neighbor Partitioning. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)