Skip to main content

Performance Enhancement of Deep Reinforcement Learning Networks Using Feature Extraction

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

  • 3890 Accesses

Abstract

The combination of Deep Learning and Reinforcement Learning, termed Deep Reinforcement Learning Networks (DRLN), offers the possibility of using a Deep Learning Neural Network to produce an approximate Reinforcement Learning value table that allows extraction of features from neurons in the hidden layers of the network. This paper presents a two stage technique for training a DRLN on features extracted from a DRLN trained on a identical problem, via the implementation of the Q-Learning algorithm, using TensorFlow. The results show that the extraction of features from the hidden layers of the Deep Q-Network improves the learning process of the agent (4.58 times faster and better) and proves the existence of encoded information about the environment which can be used to select the best action. The research contributes preliminary work in an ongoing research project in modeling features extracted from DRLNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  4. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2012)

    Google Scholar 

  5. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  6. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: AAAI, pp. 2094–2100 (2016)

    Google Scholar 

  7. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  8. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)

  9. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning (2016)

    Google Scholar 

  10. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 6(2), 215–219 (1994)

    Article  Google Scholar 

  11. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  12. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  13. Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Riedmiller, M., et al.: Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017)

  14. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo, M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al.: Starcraft II: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782 (2017)

  15. Weber, T., Racanière, S., Reichert, D.P., Buesing, L., Guez, A., Rezende, D.J., Badia, A.P., Vinyals, O., Heess, N., Li, Y., et al.: Imagination-augmented agents for deep reinforcement learning. arXiv preprint arXiv:1707.06203 (2017)

  16. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural networks. Google Research Blog, p. 14, Retrieved 20 June 2015

    Google Scholar 

  17. Mordvintsev, A., Olah, C., Tyka, M.: DeepDream - a code example for visualizing neural networks. Google Research (2015)

    Google Scholar 

  18. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)

  19. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joaquin Ollero or Christopher Child .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ollero, J., Child, C. (2018). Performance Enhancement of Deep Reinforcement Learning Networks Using Feature Extraction. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics