Skip to main content

Oxidative Stress and Hearing Loss

  • Chapter
  • First Online:
Inflammatory Mechanisms in Mediating Hearing Loss

Abstract

Oxidative stress is considered as a central factor in acquired hearing loss. This chapter provides an introduction to the fundamental concepts of oxidative stress as well as an overview of cochlear oxidative stress pathways activated by risk factors of auditory dysfunction. It also discusses the susceptibility of the inner ear to oxidative damage, the intracellular redox sensitive mechanisms that facilitate cytotoxicity, and the cochlear targets of oxidative stress. Special focus is given to cochlear oxidative stress induced by exposure to environmental factors, such as noise, heavy metals, and organic solvents, ototoxic drugs/agents, such as aminoglycosides, cisplatin, and radiation, and aging. Potential biomarkers of oxidative stress and the utility of targeting cochlear oxidative stress to mitigate acquired hearing loss are discussed. Finally, recent developments in this field, including therapeutic compounds and strategies employed to target different steps in the oxidative stress signaling pathways as well as potential challenges to these approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anniko M, Wersall J. Damage to the stria vascularis in the guinea pig by acute atoxyl intoxication. Acta Otolaryngol. 1975;80:167–79.

    Article  PubMed  CAS  Google Scholar 

  • Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279:46065–72.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia A, Pak K, Brors D, Bodmer D, Frangos JA, Ryan AF. Involvement of ras activation in toxic hair cell damage of the mammalian cochlea. Neuroscience. 2003;122:1025–35.

    Article  PubMed  CAS  Google Scholar 

  • Bencko V, Symon K. Test of environmental exposure to arsenic and hearing changes in exposed children. Environ Health Perspect. 1977;19:95–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer. 2007;120:175–80.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer D, Brors D, Bodmer M, Ryan AF. [Rescue of auditory hair cells from ototoxicity by CEP-11 004, an inhibitor of the JNK signaling pathway]. Laryngorhinootologie. 2002;81:853–6.

    Article  PubMed  CAS  Google Scholar 

  • Bottger EC, Schacht J. The mitochondrion: a perpetrator of acquired hearing loss. Hear Res. 2013;303:12–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell KC, Rybak LP, Meech RP, Hughes L. D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res. 1996;102:90–8.

    Article  PubMed  CAS  Google Scholar 

  • Cappaert NL, Klis SF, Baretta AB, Muijser H, Smoorenburg GF. Ethyl benzene-induced ototoxicity in rats: a dose-dependent mid-frequency hearing loss. J Assoc Res Otolaryngol. 2000;1:292–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ceriello A. Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl. 2002;51–8.

    Google Scholar 

  • Chavko M, Prusaczyk WK, McCarron RM. Protection against blast-induced mortality in rats by hemin. J Trauma. 2008;65:1140–5; discussion 5.

    Article  PubMed  Google Scholar 

  • Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33(Suppl):S99–108.

    PubMed  CAS  Google Scholar 

  • Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience. 2009;161:214–26.

    Article  PubMed  CAS  Google Scholar 

  • Clerici WJ, DiMartino DL, Prasad MR. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res. 1995;84:30–40.

    Article  PubMed  CAS  Google Scholar 

  • Comroe JH Jr, Dripps RD, Dumke PR, Deming M. Oxygen toxicity. J Am Med Assoc. 1945;128:710–7.

    Article  CAS  Google Scholar 

  • Conlon BJ, Perry BP, Smith DW. Attenuation of neomycin ototoxicity by iron chelation. Laryngoscope. 1998;108:284–7.

    Article  PubMed  CAS  Google Scholar 

  • Crofton KM, Lassiter TL, Rebert CS. Solvent-induced ototoxicity in rats: an atypical selective mid-frequency hearing deficit. Hear Res. 1994;80:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Dehne N, Lautermann J, Petrat F, Rauen U, de Groot H. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol. 2001;174:27–34.

    Article  PubMed  CAS  Google Scholar 

  • DeWoskin RS, Riviere JE. Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna. Toxicol Appl Pharmacol. 1992;112:182–9.

    Article  PubMed  CAS  Google Scholar 

  • Dodson HC, Mohuiddin A. Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol. 2000;29:525–37.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle ND, Muldoon LL, Brummett RE, et al. Delayed sodium thiosulfate as an otoprotectant against carboplatin-induced hearing loss in patients with malignant brain tumors. Clin Cancer Res. 2001;7:493–500.

    Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1:529–39.

    Article  PubMed  CAS  Google Scholar 

  • Eshraghi AA, Wang J, Adil E, et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res. 2007;226:168–77.

    Article  PubMed  CAS  Google Scholar 

  • Esterberg R, Hailey DW, Rubel EW, Raible DW. ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci. 2014;34:9703–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feghali JG, Liu W, Van De Water TR. L-n-acetyl-cysteine protection against cisplatin-induced auditory neuronal and hair cell toxicity. Laryngoscope. 2001;111:1147–55.

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Hu W, Marnett LJ, Tang MS. Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res. 2006;601:125–36.

    Article  PubMed  CAS  Google Scholar 

  • Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc. 1894;65:899–910.

    Article  CAS  Google Scholar 

  • Fetoni AR, Sergi B, Ferraresi A, Paludetti G, Troiani D. Protective effects of alpha-tocopherol and tiopronin against cisplatin-induced ototoxicity. Acta Otolaryngol. 2004;124:421–6.

    Article  PubMed  CAS  Google Scholar 

  • Fetoni AR, Rolesi R, Paciello F, et al. Styrene enhances the noise induced oxidative stress in the cochlea and affects differently mechanosensory and supporting cells. Free Radic Biol Med. 2016;101:211–25.

    Article  PubMed  CAS  Google Scholar 

  • Fridberger A, Flock A, Ulfendahl M, Flock B. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A. 1998;95:7127–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: a mechanism in common. Science. 1954;119:623–6.

    Article  PubMed  CAS  Google Scholar 

  • Gopinath SP, Valadka AB, Goodman JC, Robertson CS. Extracellular glutamate and aspartate in head injured patients. Acta Neurochir Suppl. 2000;76:437–8.

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res. 1995;704:135–40.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich UR, Helling K, Sifferath M, et al. Gentamicin increases nitric oxide production and induces hearing loss in guinea pigs. Laryngoscope. 2008;118:1438–42.

    Article  PubMed  CAS  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27:1–19.

    Article  PubMed  Google Scholar 

  • Hirose K, Hockenbery DM, Rubel EW. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res. 1997;104:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Hong SH, Park SK, Cho YS, et al. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig. Hear Res. 2006;211:46–53.

    Article  PubMed  CAS  Google Scholar 

  • Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;2011:937861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamesdaniel S, Ding D, Kermany MH, et al. Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res. 2008;7:3516–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamesdaniel S, Hu B, Kermany MH, et al. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics. 2011;75:410–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamesdaniel S, Coling D, Hinduja S, et al. Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem. 2012;287:18674–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamesdaniel S, Rathinam R, Neumann WL. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity. Redox Biol. 2016;10:257–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45:1–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H, Sha SH, Forge A, Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ. 2006;13:20–30.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Talaska AE, Schacht J, Sha SH. Oxidative imbalance in the aging inner ear. Neurobiol Aging. 2007;28:1605–12.

    Article  CAS  PubMed  Google Scholar 

  • Jones LG, Prins J, Park S, Walton JP, Luebke AE, Lurie DI. Lead exposure during development results in increased neurofilament phosphorylation, neuritic beading, and temporal processing deficits within the murine auditory brainstem. J Comp Neurol. 2008;506:1003–17.

    Article  PubMed  CAS  Google Scholar 

  • Kaur T, Borse V, Sheth S, et al. Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J Neurosci. 2016;36:3962–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamoto K, Sha SH, Minoda R, et al. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther. 2004;9:173–81.

    Article  PubMed  CAS  Google Scholar 

  • Kil J, Pierce C, Tran H, Gu R, Lynch ED. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res. 2007;226:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Shin SO. Ultrastructural changes in the cochlea of the guinea pig after fast neutron irradiation. Otolaryngol Head Neck Surg. 1994;110:419–27.

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Jeong HJ, Myung NY, et al. The protective mechanism of antioxidants in cadmium-induced ototoxicity in vitro and in vivo. Environ Health Perspect. 2008;116:854–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korver KD, Rybak LP, Whitworth C, Campbell KM. Round window application of D-methionine provides complete cisplatin otoprotection. Otolaryngol Head Neck Surg. 2002;126:683–9.

    Article  PubMed  Google Scholar 

  • Lasky RE, Maier MM, Snodgrass EB, Hecox KE, Laughlin NK. The effects of lead on otoacoustic emissions and auditory evoked potentials in monkeys. Neurotoxicol Teratol. 1995;17:633–44.

    Article  PubMed  CAS  Google Scholar 

  • Lautermann J, McLaren J, Schacht J. Glutathione protection against gentamicin ototoxicity depends on nutritional status. Hear Res. 1995;86:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Lee JN, Kim SG, Lim JY, et al. 3-Aminotriazole protects from CoCl2-induced ototoxicity by inhibiting the generation of reactive oxygen species and proinflammatory cytokines in mice. Arch Toxicol. 2016;90:781–91.

    Article  PubMed  CAS  Google Scholar 

  • Li G, Liu W, Frenz D. Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS. Neurotoxicology. 2006;27:22–30.

    Article  PubMed  CAS  Google Scholar 

  • Li P, Ding D, Salvi R, Roth JA. Cobalt-induced ototoxicity in rat postnatal cochlear organotypic cultures. Neurotox Res. 2015;28:209–21.

    Article  PubMed  CAS  Google Scholar 

  • Liang GH, Jarlebark L, Ulfendahl M, Moore EJ. Mercury (Hg2+) suppression of potassium currents of outer hair cells. Neurotoxicol Teratol. 2003;25:349–59.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res. 1984;16:55–74.

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zheng G, Wu Y, et al. Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement. Neurotoxicology. 2013;39:173–81.

    Article  PubMed  CAS  Google Scholar 

  • Low WK, Sun L, Tan MG, Chua AW, Wang DY. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line. Acta Otolaryngol. 2008;128:440–5.

    Article  PubMed  CAS  Google Scholar 

  • Lynch ED, Gu R, Pierce C, Kil J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res. 2005;201:81–9.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol. 2005;567:505–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus DC, Thalmann R, Marcus NY. Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope. 1978;88:1825–35.

    Article  PubMed  CAS  Google Scholar 

  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95.

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    PubMed  CAS  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging. 1999;20:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Montuschi P, Barnes PJ, Roberts LJ II. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004;18:1791–800.

    Article  PubMed  CAS  Google Scholar 

  • Morata TC, Dunn DE, Sieber WK. Occupational exposure to noise and ototoxic organic solvents. Arch Environ Health. 1994;49:359–65.

    Article  PubMed  CAS  Google Scholar 

  • More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci. 2010;30:9500–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mujica-Mota MA, Ibrahim FF, Bezdjian A, Devic S, Daniel SJ. The effect of fractionated radiotherapy in sensorineural hearing loss: an animal model. Laryngoscope. 2014;124:E418–24.

    Article  PubMed  Google Scholar 

  • Mukherjea D, Jajoo S, Whitworth C, et al. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci. 2008;28:13056–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjea D, Ghosh S, Bhatta P, et al. Early investigational drugs for hearing loss. Expert Opin Investig Drugs. 2015;24:201–17.

    Article  PubMed  CAS  Google Scholar 

  • Muthusamy S, Peng C, Ng JC. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells. Chemosphere. 2016;165:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Nuttall AL. Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise Health. 1999;2:17–32.

    PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Altschuler RA, Schacht J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res. 2000;878:163–73.

    Article  PubMed  CAS  Google Scholar 

  • Ohinata Y, Miller JM, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res. 2003;966:265–73.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol. 1999;4:229–36.

    Article  PubMed  CAS  Google Scholar 

  • Ozcaglar HU, Agirdir B, Dinc O, Turhan M, Kilincarslan S, Oner G. Effects of cadmium on the hearing system. Acta Otolaryngol. 2001;121:393–7.

    Article  PubMed  CAS  Google Scholar 

  • Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2005;61:1393–402.

    Article  PubMed  Google Scholar 

  • Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009;15:1702–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem. 2001;47:1467–9.

    PubMed  CAS  Google Scholar 

  • Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci. 2010;1201:183–8.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola U, Xing-Qun L, Virkkala J, et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci. 2000;20:43–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B. Oxidative stress in the cochlea: an update. Curr Med Chem. 2010;17:3591–604.

    Article  PubMed  CAS  Google Scholar 

  • Priuska EM, Schacht J. Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol. 1995;50:1749–52.

    Article  PubMed  CAS  Google Scholar 

  • Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci. 1999;884:249–54.

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res. 2004;188:47–56.

    Article  PubMed  CAS  Google Scholar 

  • Rathinam R, Ghosh S, Neumann WL, Jamesdaniel S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discov. 2015;1.

    Google Scholar 

  • Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407:777–83.

    Article  PubMed  CAS  Google Scholar 

  • Roth JA, Salvi R. Ototoxicity of divalent metals. Neurotox Res. 2016;30:268–82.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP. Hearing: the effects of chemicals. Otolaryngol Head Neck Surg. 1992;106:677–86.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Ravi R, Somani SM. Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam Appl Toxicol. 1995;26:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226:157–67.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Mukherjea D, Jajoo S, Kaur T, Ramkumar V. siRNA-mediated knock-down of NOX3: therapy for hearing loss? Cell Mol Life Sci. 2012;69:2429–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samson J, Wiktorek-Smagur A, Politanski P, et al. Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine. Neuroscience. 2008;152:146–50.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt NC, Rubel EW, Nathanson NM. Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci. 2009;29:3843–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seidman MD. Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope. 2000;110:727–38.

    Article  PubMed  CAS  Google Scholar 

  • Seidman MD, Shivapuja BG, Quirk WS. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg. 1993;109:1052–6.

    Article  PubMed  CAS  Google Scholar 

  • Seidman MD, Khan MJ, Tang WX, Quirk WS. Influence of lecithin on mitochondrial DNA and age-related hearing loss. Otolaryngol Head Neck Surg. 2002;127:138–44.

    Article  PubMed  Google Scholar 

  • Seidman MD, Ahmad N, Joshi D, Seidman J, Thawani S, Quirk WS. Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Otolaryngol Suppl. 2004;16–24.

    Article  CAS  Google Scholar 

  • Sha SH, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest. 1999;79:807–13.

    PubMed  CAS  Google Scholar 

  • Sha SH, Taylor R, Forge A, Schacht J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res. 2001a;155:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Sha SH, Zajic G, Epstein CJ, Schacht J. Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss. Audiol Neurootol. 2001b;6:117–23.

    Article  PubMed  CAS  Google Scholar 

  • Shargorodsky J, Curhan SG, Henderson E, Eavey R, Curhan GC. Heavy metals exposure and hearing loss in US adolescents. Arch Otolaryngol Head Neck Surg. 2011;137:1183–9.

    Article  PubMed  Google Scholar 

  • Sharma KK, Milligan JR, Bernhard WA. Multiplicity of DNA single-strand breaks produced in pUC18 exposed to the direct effects of ionizing radiation. Radiat Res. 2008;170:156–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi X, Nuttall AL. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res. 2003;967:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Shin YS, Hwang HS, Kang SU, Chang JW, Oh YT, Kim CH. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology. 2014;40:111–22.

    Article  PubMed  CAS  Google Scholar 

  • Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, et al. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med. 2003;45:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Smith DI, Lawrence M, Hawkins JE Jr. Effects of noise and quinine on the vessels of the stria vascularis: an image analysis study. Am J Otolaryngol. 1985;6:280–9.

    Article  PubMed  CAS  Google Scholar 

  • Someya S, Xu J, Kondo K, et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A. 2009;106:19432–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic Biol Med. 1998;25:189–95.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MJ, Rarey KE, Conolly RB. Ototoxicity of toluene in rats. Neurotoxicol Teratol. 1988;10:525–30.

    Article  PubMed  CAS  Google Scholar 

  • Thomas AJ, Hailey DW, Stawicki TM, et al. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci. 2013;33:4405–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian CJ, Kim SW, Kim YJ, et al. Red ginseng protects against gentamicin-induced balance dysfunction and hearing loss in rats through antiapoptotic functions of ginsenoside Rb1. Food Chem Toxicol. 2013;60:369–76.

    Article  PubMed  CAS  Google Scholar 

  • Tokgoz B, Ucar C, Kocyigit I, et al. Protective effect of N-acetylcysteine from drug-induced ototoxicity in uraemic patients with CAPD peritonitis. Nephrol Dial Transplant. 2011;26:4073–8.

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Khan M. Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead-induced hypertension. Clin Exp Pharmacol Physiol. 2007;34:920–5.

    Article  PubMed  CAS  Google Scholar 

  • Vlajkovic SM, Lin SC, Wong AC, Wackrow B, Thorne PR. Noise-induced changes in expression levels of NADPH oxidases in the cochlea. Hear Res. 2013;304:145–52.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003;23:8596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warchol ME. Cellular mechanisms of aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg. 2010;18:454–8.

    Article  PubMed  Google Scholar 

  • Wassick KH, Yonovitz A. Methyl mercury ototoxicity in mice determined by auditory brainstem responses. Acta Otolaryngol. 1985;99:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Hess A, Michel O, Yagi T. Nitric oxide synthase inhibitor reduces the apoptotic change in the cisplatin-treated cochlea of guinea pigs. Anticancer Drugs. 2000;11:731–5.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Inai S, Jinnouchi K, et al. Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res. 2002;22:4081–5.

    PubMed  CAS  Google Scholar 

  • Winther FO. Early degenerative changes in the inner ear sensory cells of the guinea pig following local x-ray irradiation. A preliminary report. Acta Otolaryngol. 1969;67:262–8.

    Article  PubMed  CAS  Google Scholar 

  • Wimmer C, Mees K, Stumpf P, Welsch U, Reichel O, Suckfüll M. Round window application of D-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity. Otol Neurotol. 2004;25:33–40.

    Article  Google Scholar 

  • Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci. 2015;7:58.

    PubMed  PubMed Central  Google Scholar 

  • Xiong M, He Q, Lai H, Wang J. Oxidative stress in spiral ganglion cells of pigmented and albino guinea pigs exposed to impulse noise. Acta Otolaryngol. 2011;131:914–20.

    Article  PubMed  Google Scholar 

  • Yamamura K, Terayama K, Yamamoto N, Kohyama A, Kishi R. Effects of acute lead acetate exposure on adult guinea pigs: electrophysiological study of the inner ear. Fundam Appl Toxicol. 1989;13:509–15.

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol. 1995;252:504–8.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM. Delayed production of free radicals following noise exposure. Brain Res. 2004;1019:201–9.

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Wang X, Hill K, et al. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal. 2015;22:1308–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang GX, Lu XM, Kimura S, Nishiyama A. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res. 2007;76:204–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Jamesdaniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamesdaniel, S. (2018). Oxidative Stress and Hearing Loss. In: Ramkumar, V., Rybak, L. (eds) Inflammatory Mechanisms in Mediating Hearing Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-92507-3_2

Download citation

Publish with us

Policies and ethics