Skip to main content

Rodent Sound Localization and Spatial Hearing

  • Chapter
  • First Online:
Rodent Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 67))

Abstract

Sound localization and directional hearing are fundamental for rodents to successfully navigate their environment, detect predators and prey, and locate conspecifics. In this chapter, the cues available to rodents for localizing and discriminating sounds in space are reviewed, including interaural level and timing differences and spectral cues. The neural circuits supporting sound localization are also introduced. Sound localization acuity and directional hearing behavior in azimuth and elevation that have been measured in terrestrial and subterranean rodent species are compared. Due to the limited scope of behavioral testing performed in most rodent species to date, binaural evoked potential studies that have been used to probe directional hearing in rodents are also considered as an alternative to labor-intensive behavioral measures. Finally, the trends observed across species are summarized and areas for future study are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, P. D., & Ison, J. R. (2010). Sensitivity of the mouse to changes in azimuthal sound location: Angular separation, spectral composition, and sound level. Behavioral Neuroscience, 124(2), 265–277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Behrens, D., & Klump, G. M. (2016). Comparison of mouse minimum audible angle determined in prepulse inhibition and operant conditioning procedures. Hearing Research, 333, 167–178.

    Article  PubMed  Google Scholar 

  • Beyerl, B. D. (1978). Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Research, 145, 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz, E. A., & Zakon, H. H. (2015). Emerging from the bottleneck: Benefits of the comparative approach to modern neuroscience. Trends in Neurosciences, 38(5), 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, A. D., Stecker, G. C., & Tollin, D. J. (2015). The precedence effect in sound localization. Journal of the Association for Research in Otolaryngology, 16(1), 1–28.

    Article  PubMed  Google Scholar 

  • Cant, N. B., & Casseday, J. H. (1986). Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. The Journal of Comparative Neurology, 247, 457–476.

    Article  CAS  PubMed  Google Scholar 

  • Carlile, S., & Pettigrew, A. G. (1987). Directional properties of the auditory periphery in the guinea pig. Hearing Research, 31(2), 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Chase, S. M., & Young, E. D. (2005). Limited segregation of different types of sound localization information among classes of units in the inferior colliculus. The Journal of Neuroscience, 25, 7575–7585.

    Google Scholar 

  • Coleman, J. R., & Clerici, W. J. (1987). Sources of projections to subdivisions of the inferior colliculus in the rat. The Journal of Comparative Neurology, 262, 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. A. (2005). Contralateral effects and binaural interactions in dorsal cochlear nucleus. Journal of the Association for Research in Otolaryngology, 6, 280–296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, K. A., Ramachandran, R., & May, B. J. (2003). Aauditory processing of spectral cues for sound localization in the inferior colliculus. Journal of the Association for Research in Otolaryngology, 4, 148–163.

    Article  PubMed  Google Scholar 

  • Dobie, R. A., & Berlin, C. I. (1979). Binaural interaction in brainstem-evoked responses. Archives of Otolaryngology, 105(7), 391–398.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y., Li, J., Wu, X., & Li, L. (2009a). Precedence-effect-induced enhancement of prepulse inhibition in socially reared but not isolation-reared rats. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 44–58.

    Article  Google Scholar 

  • Du, Y., Ma, T., Wang, Q., Wu, X., & Li, L. (2009b). Two crossed axonal projections contribute to binaural unmasking of frequencyfollowing responses in rat inferior colliculus. European Journal of Neuroscience, 30(9), 1779–1789.

    Article  PubMed  Google Scholar 

  • Du, Y., Huang, Q., Wu, X., Galbraith, G. C., & Li, L. (2009c). Binaural unmasking of frequency-following responses in rat amygdala. Journal of Neurophysiology, 101(3), 1647–1659.

    Article  PubMed  Google Scholar 

  • Du, Y., Wu, X., & Li, L. (2010). Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats. Behavioural Brain Research, 206(2), 192–201.

    Article  PubMed  Google Scholar 

  • Du, Y., Wang, Q., Zhang, Y., Wu, X., & Li, L. (2012). Perceived targetmasker separation unmasks responses of lateral amygdala to the emotionally conditioned target sounds in awake rats. Neuroscience, 225, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Ehret, G., & Dreyer, A. (1984). Sound localization in the horizontal plane by the house mouse (Mus musculus). In D. Varju & H. U. Schnitzler (Eds.), Localization and orientation in biology and engineering (pp. 60–62). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Frisina, R. D., Singh, A., Bak, M., Bozorg, S., et al. (2011). F1 (CBA× C57) mice show superior hearing in old age relative to their parental strains: Hybrid vigor or a new animal model for “golden ears”? Neurobiology of Aging, 32(9), 1716–1724.

    Article  PubMed  Google Scholar 

  • Gessele, N., Garcia-Pino, E., Omerbašić, D., Park, T. J., & Koch, U. (2016). Structural changes and lack of HCN1 channels in the binaural auditory brainstem of the naked mole-rat (Heterocephalus glaber). PLoS One, 11(1), e0146428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glendenning, K. K., Brusno-Bechtold, J. K., Thompson, G. C., & Masterton, R. B. (1981). Ascending auditory afferents to the nuclei of the lateral leminscus. The Journal of Comparative Neurology, 197, 673–703.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D. A., Lee, A. C., Hamilton, W. D., Benjamin III, L. C., et al. (2016). Volumes of cochlear nucleus regions in rodents. Hearing Research, 339, 161–174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goksoy, C., Demirtas, S., Yagcioglu, S., & Ungan, P. (2005). Interaural delay-dependent changes in the binaural interaction component of the guinea pig brainstem responses. Brain Research, 1054(2), 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J. M., & Warr, W. B. (1962). A study of the cochlear nuclei and ascending auditory pathways of the medulla. The Journal of Comparative Neurology, 119, 341–379.

    Article  CAS  PubMed  Google Scholar 

  • Hartung, K., & Sterbing, S. J. (1997). Generation of virtual sound sources for electrophysiological characterization of auditory spatial tuning in the guinea pig. In J. Syka (Ed.), Acoustical signal processing in the central auditory system (pp. 407–412). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Hebrank, J., & Wright, D. (1974). Spectral cues used in the localization of sound sources on the median plane. The Journal of the Acoustical Society of America, 56(6), 1829–1834.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, H., & Masterton, B. (1980). Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. The Journal of the Acoustical Society of America, 68(6), 1584–1599.

    Article  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1985). Sound localization in wild Norway rats (Rattus norvegicus). Hearing Research, 19(2), 151–155.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2016). The evolution of mammalian sound localization. Acoustics Today, 12(1), 20–35.

    Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1988a). Sound localization in a predatory rodent, the northern grasshopper mouse (Onychomys leucogaster). Journal of Comparative Psychology, 102(1), 66–71.

    Article  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1988b). Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behavioral Neuroscience, 102(3), 422–428.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1990). Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hearing Research, 46(3), 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992a). Visual factors in sound localization in mammals. The Journal of Comparative Neurology, 317(3), 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992b). Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hearing Research, 62(2), 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1993). Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. The Journal of Comparative Neurology, 331(3), 418–433.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., Heffner, H. E., Kearns, D., Vogel, J., & Koay, G. (1994). Sound localization in chinchillas. I: Left/right discriminations. Hearing Research, 80(2), 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., Heffner, H. E., & Koay, G. (1995). Sound localization in chinchillas. II. Front/back and vertical localization. Hearing Research, 88(1), 190–198.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., Koay, G., & Heffner, H. E. (1996). Sound localization in chinchillas III: Effect of pinna removal. Hearing Research, 99(1), 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Sound-localization acuity changes with age in C57BL/6J mice. In J. F. Willott (Ed.), Handbook of mouse auditory research: From behavior to molecular biology (pp. 31–35). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Henry, K. R. (1982). Genetic influences on binaural summation and recovery rate of the brainstem auditory evoked response. Acta Otolaryngologica, 93(1–6), 1–7.

    Article  CAS  Google Scholar 

  • Hoeffding, V., & Harrison, J. M. (1979). Auditory discrimination: Role of time and intensity in the precedence effect. Journal of the Experimental Analysis of Behavior, 32(2), 157–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. L., & Winer, J. A. 2000. Auditory thalamocortical projections in the cat: Laminar and areal patterns of input. The Journal of Comparative Neurology, 427(2), 302–331.

    Article  CAS  PubMed  Google Scholar 

  • Irving, R., & Harrison, J. M. (1967). The superior olivary complex and audition: A comparative study. The Journal of Comparative Neurology, 130(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Ison, J. R., & Agrawal, P. (1998). The effect of spatial separation of signal and noise on masking in the free field as a function of signal frequency and age in the mouse. The Journal of the Acoustical Society of America, 104(3), 1689–1695.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, W. M., & Merzenich, M. M. (1984). Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology, 52, 819–847.

    Article  CAS  PubMed  Google Scholar 

  • Joris, P. X., &Yin, T. C. (1995). Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Journal of Neurophysiology, 73, 1043–1062.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh, G. L., & Kelly, J. B. (1986). Midline and lateral field sound localization in the albino rat (Rattus norvegicus). Behavioral. Neuroscience, 100(2), 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B. (1974). Localization of paired sound sources in the rat: Small time differences. The Journal of the Acoustical Society of America, 55(6), 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B. (1980). Effects of auditory cortical lesions on sound localization by the rat. Journal of Neurophysiology, 44(6), 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B., & Glazier, S. J. (1978). Auditory cortex lesions and discrimination of spatial location by the rat. Brain Research, 145(2), 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B., & Kavanagh, G. L. (1986). Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. Behavioral Neuroscience, 100(4), 569–575.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B., & Phillips, D. P. (1991). Coding of interaural time differences of transients in auditory cortex of Rattus norvegicus: Implications for the evolution of mammalian sound localization. Hearing Research, 55, 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. B., Buckthought, A. D., & Kidd, S. A. (1998). Monaural and binaural response properties of single neurons in the rat’s dorsal nucleus of the lateral lemniscus. Hearing Research, 122, 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Khurana, S., Liu, Z., Lewis, A. S., Rosa, K., et al. (2012). An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. The Journal of Neuroscience, 32(8), 2814–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, U., Braun, M., Kapfer, C., & Grothe, B. (2004). Distribution of HCN1 and HCN2 in rat auditory brainstem nuclei. European Journal of Neuroscience, 20(1), 79–91.

    Article  PubMed  Google Scholar 

  • Koka, K., Read, H. L., & Tollin, D. J. (2008). The acoustical cues to sound location in the rat: Measurements of directional transfer functions. The Journal of the Acoustical Society of America, 123(6), 4297–4309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koka, K., Jones, H. G., Thornton, J. L., Lupo, J. E., & Tollin, D. J. (2011). Sound pressure transformations by the head and pinnae of the adult chinchilla (Chinchilla lanigera). Hearing Research, 272(1), 135–147.

    Article  PubMed  Google Scholar 

  • Kyweriga, M., Stewart, W., Cahill, C., & Wehr, M. (2014). Synaptic mechanisms underlying interaural level difference selectivity in rat auditory cortex. Journal of Neurophysiology, 112, 2561–2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a “stethoscope”: Burrow acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94(2), 134–138.

    Article  CAS  PubMed  Google Scholar 

  • Langley, W. M. (1983). Relative importance of the distance senses in grasshopper mouse predatory behaviour. Animal Behaviour, 31(1), 199–205.

    Article  Google Scholar 

  • Lauer, A. M., Slee, S. J., & May, B. J. (2011). Acoustic basis of directional acuity in laboratory mice. Journal of the Association for Research in Otolaryngology, 12(5), 63–645.

    Article  Google Scholar 

  • Lauer, A. M., May, B. J., Hao, Z. J., & Watson, J. (2009). Analysis of environmental sound levels in modern rodent housing rooms. Lab Animal, 38(5), 154–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauer, A. M., Connelly, C. J., Graham, H., & Ryugo, D. K. (2013). Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus. PLoS One, 8, e73308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laumen, G., Tollin, D. J., Beutelmann, R., & Klump, G. M. (2016a). Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences. Hearing Research, 337, 46–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laumen, G., Ferber, A. T., Klump, G. M., & Tollin, D. J. (2016b). The physiological basis and clinical use of the binaural interaction component of the auditory brainstem response. Ear and Hearing, 37(5), 276–290.

    Article  Google Scholar 

  • Lingner, A., Wiegrebe, L., & Grothe, B. (2012). Sound localization in noise by gerbils and humans. Journal of the Association for Research in Otolaryngology, 13(2), 237–248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. (1999). The precedence effect. The Journal of the Acoustical Society of America, 106(4), 1633–1654.

    Article  CAS  PubMed  Google Scholar 

  • Maier, J. K., & Klump, G. M. (2006). Resolution in azimuth sound localization in the Mongolian gerbil (Meriones unguiculatus). The Journal of the Acoustical Society of America, 119(2), 1029–1036.

    Article  PubMed  Google Scholar 

  • Maier, J. K., Kindermann, T., Grothe, B., & Klump, G. M. (2008). Effects of omni-directional noise exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus)—a behavioral approach. Brain Research, 1220, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Maki, K., & Furukawa, S. (2005). Reducing individual differences in the external-ear transfer functions of the Mongolian gerbil. The Journal of the Acoustical Society of America, 118(4), 2392–2404.

    Article  PubMed  Google Scholar 

  • Malmierca, M. S., Merchán, M. A., Henkel, C. K. & Oliver, D. L. (2002). Direct projections from cochlear nuclear complex to auditory thalamus in the rat. The Journal of Neuroscience, 22, 10891–10897.

    Article  CAS  PubMed  Google Scholar 

  • Markovitz, N. S. & Pollak, G. D. (1994). Binaural processing in the dorsal nucleus of the lateral lemniscus. Hearing Research, 73, 121–140.

    Article  CAS  PubMed  Google Scholar 

  • Mast, T. E. (1969). Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of the chinchilla. Journal of Neurophysiology, 33, 108–115.

    Article  Google Scholar 

  • Masterton, B., Thompson, G. C., Bechtold, J. K., & RoBards, M. J. (1975). Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. Journal of Comparative and Physiological Psychology, 89(5), 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Nordeen, K. W., Killackey, H. P. & Kitzes, L. M. (1983). Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. The Journal of Comparative Neurology, 214, 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., Quinlan, C. K., & Dingle, R. N. (2012). Stability of central binaural sound localization mechanisms in mammals and the Heffner hypothesis. Neuroscience & Biobehavioral Reviews, 36(2), 889–900.

    Article  Google Scholar 

  • Panyutina, A. A., Kuznetsov, A. N., Volodin, I. A., Abramov, A. V., & Soldatova, I. B. (2017). A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals. Integrative Zoology, 12(2), 172–184.

    Article  PubMed  Google Scholar 

  • Popper, A. N., & Fay, R. R. (2005). Sound source localization. New York: Springer Science+Business Media.

    Book  Google Scholar 

  • Portfors, C. V., & Von Gersdorff, H. (2013). Macrocircuits for sound localization use leaky coincidence detectors and specialized synapses. Neuron, 78(5), 755–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran, R., Davis, K. A., & May, B. J. (1999). Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. Journal of Neurophysiology, 82, 152–163.

    Article  CAS  PubMed  Google Scholar 

  • Rayleigh, L. (1907). XII. On our perception of sound direction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 6, 13(74), 214–232.

    Google Scholar 

  • Rice, J. J., May, B. J., Spirou, G. A., & Young, E. D. (1992). Pinna-based spectral cues for sound localization in cat. Hearing Research, 58(2), 132–152.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, J. C., & Garfinkle, T. J. (1983). Peripheral anatomy and physiology. In J. F. Willott (Ed.), The auditory psychobiology of the mouse (pp. 131–168). Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Smith, P. H., Joris, P. X., Carney, L. H., & Yin, T. C. T. (1991). Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. The Journal of Comparative Neurology, 304, 387–407.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, G. C., & Cortez, A. M. (1983). The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behavioral Brain Research, 8, 211–216.

    Article  CAS  Google Scholar 

  • Tollin, D. J., & Yin, T. C. T. (2005). Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. The Journal of Neuroscience, 25, 10648–10657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada, S. I., & Starr, A. (1989). Anatomical bases of binaural interaction in auditory brain-stem responses from guinea pig. Electroencephalography and Clinical Neurophysiology, 72(6), 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., & Li, L. (2015). Auditory midbrain representation of a break in interaural correlation. Journal of Neurophysiology, 114(4), 2258–2264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wesolek, C. M., Koay, G., Heffner, R. S., & Heffner, H. E. (2010). Laboratory rats (Rattus norvegicus) do not use binaural phase differences to localize sound. Hearing Research, 265(1), 54–62.

    Article  PubMed  Google Scholar 

  • Wilson, J. R., & Krishnan, A. (2005). Human frequency-following responses to binaural masking level difference stimuli. Journal of the American Academy of Audiology, 16(3), 184–195.

    Article  PubMed  Google Scholar 

  • Wolf, M., Schuchmann, M., & Wiegrebe, L. (2010). Localization dominance and the effect of frequency in the Mongolian gerbil, Meriones unguiculatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196(7), 463–470.

    Article  PubMed  Google Scholar 

  • Young, E. D., & Davis, K. A. (2002). Circuitry and function of the dorsal cochlear nucleus. In D. Oertel, R. R. Fay, & A. N. Popper (Eds.), Integrative functions in the mammalian auditory pathway (pp. 160–206). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. Lauer .

Editor information

Editors and Affiliations

Ethics declarations

A. Lauer, J. H. Engel, and K. Schrode declare that they have no conflicts of interest. Amanda Lauer has received grants from the National Institutes of Health, Action on Hearing Loss, the American Hearing Research Foundation, the National Organization for Hearing Research, the Tinnitus Research Consortium, the Capita Foundation, Johns Hopkins University, and the David M. Rubenstein Fund for Hearing Research. Katrina Schrode has received funding from the National Science Foundation and the National Institutes of Health.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lauer, A.M., Engel, J.H., Schrode, K. (2018). Rodent Sound Localization and Spatial Hearing. In: Dent, M., Fay, R., Popper, A. (eds) Rodent Bioacoustics. Springer Handbook of Auditory Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-92495-3_5

Download citation

Publish with us

Policies and ethics