Abstract
Octopus vulgaris underwent a radical modification to cope with the benthic lifestyle. It diverged from other cephalopods in terms of body plan, anatomy, behavior, and intelligence. It independently evolved the largest and most complex nervous system and sophisticated behaviors among invertebrates in a separate evolutionary lineage. It is equipped with unusual traits that confer it an incredible evolutionary success: arms capable of a wide range of movements with no skeletal support; developed eyes with a complex visual behavior; vestibular system; primitive “hearing” system; chemoreceptors located in epidermis, suckers, and mouth; and a discrete olfactory organ. As if these were not enough, the occurrence of recently discovered adult neurogenesis and the high level of RNA editing give it a master key to face environmental challenges. Here we provide an overview of some of the winning evolutionary inventions that octopus puts in place such as the capacity to see color, smell by touch, edit own genes, and rejuvenate own brain.
Keywords
- Octopus vulgaris
- Adult neurogenesis
- Evolution
- Chemoreception
- RNA editing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akkaynak D, Allen JJ, Mathger LM, Chiao CC, Hanlon RT (2013) Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(3):211–225. https://doi.org/10.1007/s00359-012-0785-3
Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes BP, Edsinger-Gonzales E, Freeman RM, Hanlon RT, Koenig KM, Lindgren AR, Martindale MQ, Minx P, Moroz LL, Nödl M-T, Nyholm SV, Ogura A, Pungor JR, Rosenthal JJC, Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW (2012) Cephalopod genomics: a plan of strategies and organization. Stand Genomic Sci 7(1):175–188. https://doi.org/10.4056/sigs.3136559
Altman JS (1971) Control of accept and reject reflexes in the octopus. Nature 229(5281):204–206
Anraku K, Archdale MV, Hatanaka K, Marui T (2005) Chemical stimuli and feeding behavior in octopus, Octopus vulgaris. Phuket Mar Biol Center Bull 66:221–227
Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517(4):539–549. https://doi.org/10.1002/cne.22174
Basil JA, Hanlon RT, Sheikh SI, Atema J (2000) Three-dimensional odor tracking by Nautilus pompilius. J Exp Biol 203(Pt 9):1409–1414
Bertapelle C, Polese G, Di Cosmo A (2017) Enriched environment increases PCNA and PARP1 levels in Octopus vulgaris central nervous system: first evidence of adult neurogenesis in Lophotrochozoa. J Exp Zool B Mol Dev Evol 328:347–359. https://doi.org/10.1002/jez.b.22735
Boal JG (1996) A review of simultaneous visual discrimination as a method of training octopuses. Biol Rev Camb Philos Soc 71(2):157–190
Boal JG, Wittenberg KM, Hanlon RT (2000) Observational learning does not explain improvement in predation tactics by cuttlefish (Mollusca: Cephalopoda). Behav Processes 52(2-3):141–153
Boycott BB, Young JZ (1956) Reaction to shape in Octopus vulgaris Lamarck. Proc Zool Soc Lond 126(4):491–547. https://doi.org/10.1111/j.1096-3642.1956.tb00451.x
Boyle PR (1983) Ventilation rate and arousal in the octopus. J Exp Mar Biol Ecol 69:129–136. https://doi.org/10.1016/0022-0981(83)90062-X
Brown PK, Brown PS (1958) Visual pigments of the octopus and cuttlefish. Nature 182:1288. https://doi.org/10.1038/1821288a0
Budelmann BU (1995) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser Vergal, Basel
Budelmann BU (1996) Active marine predators: the sensory world of cephalopods. Mar Freshw Behav Physiol 27:59–75. https://doi.org/10.1080/10236249609378955
Budelmann BU, Williamson R (1994) Directional sensitivity of hair cell afferents in the Octopus statocyst. J Exp Biol 187:245–259
Buresch KC, Ulmer KM, Akkaynak D, Allen JJ, Mäthger LM, Nakamura M, Hanlon RT (2015) Cuttlefish adjust body pattern intensity with respect to substrate intensity to aid camouflage, but do not camouflage in extremely low light. J Exp Mar Biol Ecol 462:121–126. https://doi.org/10.1016/j.jembe.2014.10.017
Buresi A, Croll RP, Tiozzo S, Bonnaud L, Baratte S (2014) Emergence of sensory structures in the developing epidermis in Sepia officinalis and other coleoid cephalopods. J Comp Neurol 522(13):3004–3019. https://doi.org/10.1002/cne.23562
Burghardt GM (2005) The genesis of animal play: testing the limits. Mit Press, Cambridge
Cayre M, Strambi C, Charpin P, Augier R, Meyer MR, Edwards JS, Strambi A (1996) Neurogenesis in adult insect mushroom bodies. J Comp Neurol 371(2):300–310. https://doi.org/10.1002/(SICI)1096-9861(19960722)371:2<300::AID-CNE9>3.0.CO;2-6
Chiao CC, Wickiser JK, Allen JJ, Genter B, Hanlon RT (2011) Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc Natl Acad Sci USA 108(22):9148–9153. https://doi.org/10.1073/pnas.1019090108
Cummins SF, Boal JG, Buresch KC, Kuanpradit C, Sobhon P, Holm JB, Degnan BM, Nagle GT, Hanlon RT (2011) Extreme aggression in male squid induced by a beta-MSP-like pheromone. Curr Biol 21(4):322–327. https://doi.org/10.1016/j.cub.2011.01.038
Di Cosmo A, Polese G (2014) Cephalopods meet neuroecology: the role of chemoreception in Octopus vulgaris reproductive behaviour. In: Di Cosmo A, Winlow W (eds) Neuroecology and neuroethology in Molluscs—the interface between behaviour and environment. NOVA Science Publisher, Hauppauge, NY, pp 117–132
Di Cosmo A, Polese G (2016) Neuroendocrine-immune systems response to environmental stressors in the cephalopod Octopus vulgaris. Front Physiol 7:434. https://doi.org/10.3389/fphys.2016.00434
Di Cosmo A, Polese G (2017) Cephalopod olfaction, vol 1. Oxford University Press. https://doi.org/10.1093/acrefore/9780190264086.013.185
Doubleday ZA, Prowse TAA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S, Quetglas A, Sauer W, Gillanders BM (2016) Global proliferation of cephalopods. Curr Biol 26(10):R406–R407. https://doi.org/10.1016/j.cub.2016.04.002
Emery DG (1975) Ciliated sensory neurons in the lip of the squid Lolliguncula brevis Blainville. Cell Tissue Res 157(3):323–329. https://doi.org/10.1007/BF00225523
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D’Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebr Neurosci 14(1):13–36. https://doi.org/10.1007/s10158-013-0165-x
Fröhlich FW (1913a) Beiträge zur allgemeinen Physiologie der Sinnesorgane. Ztschr Sinnesphysiol 48:28–164
Fröhlich FW (1913b) Vergleichende Untersuchungen über den Lichtund Farbensinn. Dt Med Wschr 30:1–11
Garrett S, Rosenthal JJC (2012) RNA editing underlies temperature adaptation in K(+) channels from polar octopuses. Science 335(6070):848–851
Gilly WF, Lucero MT (1992) Behavioral responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens. J Exp Biol 162(1):209–229
Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, Cheney KL, Mudianta IW, Russo GF, Villani G, Magliozzi L, Polese G, Zidorn C, Cutignano A, Fontana A, Ghiselin MT, Mollo E (2017) Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc Natl Acad Sci USA 114(13):3451–3456. https://doi.org/10.1073/pnas.1614655114
Godfrey-Smith P (2013) Cephalopods and the evolution of the mind. Pac Conserv Biol 19(1):4–9. https://doi.org/10.1071/PC130004
Graziadei P (1962) Receptors in the suckers of octopus. Nature 195:57. https://doi.org/10.1038/195057a0
Graziadei PPC (1971) The nervous system of the arms. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford
Graziadei PPC, Gagne HT (1976) Sensory innervation in the rim of the octopus sucker. J Morphol 150:639–680
Grenacher H (1884) Abhandlungen zur vergleichenden Anatomie des Auges. I. Die Retina der Cephalopoden. Abhandl Naturforsch Ges Halle 16:1–50
Gutnick T, Byrne RA, Hochner B, Kuba M (2011) Octopus vulgaris uses visual information to determine the location of its arm. Curr Biol 21(6):460–462. https://doi.org/10.1016/j.cub.2011.01.052
Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge
Hanlon RT, Chiao C-C, Mäthger LM, Marshall NJ (2013) A fish-eye view of cuttlefish camouflage using in situ spectrometry. Biol J Linn Soc 109(3):535–551. https://doi.org/10.1111/bij.12071
Hess C (1902) Über das Vorkommen von Sehpurpur bei Cephalopoden. Centralbl Physiol 16:91
Hess C (1905) Beiträge zur Physiologie und Anatomie des Cephalopodenauges. Archiv für die gesamte Physiologie des Menschen und der Tiere 109(9):393–439. https://doi.org/10.1007/BF01677979
Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22(20):R887–R892. https://doi.org/10.1016/j.cub.2012.09.001
Hochner B (2013) How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs. Brain Behav Evol 82(1):19–30. https://doi.org/10.1159/000353419
Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90(5):3547–3554. https://doi.org/10.1152/jn.00645.2003
Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210(3):308–317. https://doi.org/10.2307/4134567
Hu MY, Yan HY, Chung WS, Shiao JC, Hwang PP (2009) Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comp Biochem Physiol A Mol Integr Physiol 153(3):278–283. https://doi.org/10.1016/j.cbpa.2009.02.040
Hubbard SJ (1960) Hearing and the octopus statocyst. J Exp Biol 37(4):845–853
Huffard CL (2013) Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr Neurosci 13(1):11–18. https://doi.org/10.1007/s10158-013-0147-z
Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf SA (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci 4:189. https://doi.org/10.3389/fnins.2010.00189
Kroger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. Bioessays 33(8):602–613. https://doi.org/10.1002/bies.201100001
Kuba M, Meisel DV, Byrne RA, Griebel U, Mather JA (2003) Looking at play in Octopus vulgaris. Berliner Paläontologische Abhandlungen 3:163–169
Kuba MJ, Gutnick T, Burghardt GM (2014) Learning from play in octopus. In: Darmaillacq A-S, Dickel L, Mather J (eds) Cephalopod cognition. Cambridge University Press, Cambridge, pp 57–67
Kühn A (1930) Über Farbensinn und Anpassung der Körperfarbe an die Umgebung bei Tintenfischen. Nachr Ges Wiss Göttingen Math Phys Kl 1930:10–18
Kühn A (1950) Color change and color sense in cephalopods. Z Vgl Physiol 32(6):573–598
Lemaire V, Tronel S, Montaron MF, Fabre A, Dugast E, Abrous DN (2012) Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci 32(9):3101–3108. https://doi.org/10.1523/jneurosci.4731-11.2012
Lenhossék M (1894) Zur Kenntnis der Netzhaut der Cephalopoden. Ztschr Wiss Zool 58:636–660
Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80(6):281–307. https://doi.org/10.1016/j.pneurobio.2006.11.007
Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, Rosenthal JJ, Eisenberg E (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169(2):191–202.e111. https://doi.org/10.1016/j.cell.2017.03.025
Lucero MT, Gilly WF (1995) Physiology of squid olfaction. In: Abbott NJ, Williamson R, Maddock L (eds) Cephalopod neurobiology: neuroscience studies in squid, octopus and cuttlefish. Oxford University Press, London, pp 521–534
Lucero MT, Horrigan FT, Gilly WF (1992) Electrical responses to chemical stimulation of squid olfactory receptor cells. J Exp Biol 162(1):231–249
Lucero MT, Huang W, Dang T (2000) Immunohistochemical evidence for the Na+/Ca2+ exchanger in squid olfactory neurons. Philos Trans R Soc Lond B Biol Sci 355(1401):1215–1218. https://doi.org/10.1098/rstb.2000.0670
Maselli V, Xu F, Syed NI, Polese G, Di Cosmo A (2018) A novel approach to primary cell culture for Octopus vulgaris neurons. Front Physiol 9:220
Mather JA (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A Sens Neural Behav Physiol 168:491–497
Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17(1):37–48. https://doi.org/10.1016/j.concog.2006.11.006
Mäthger LM, Roberts SB, Hanlon RT (2010) Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biol Lett 6:600–603. https://doi.org/10.1098/rsbl.2010.0223
Messenger JB (1977) Evidence that octopus is colour blind. J Exp Biol 70(1):49–55
Mobley AS, Mahendra G, Lucero MT (2007) Evidence for multiple signaling pathways in single squid olfactory receptor neurons. J Comp Neurol 501(2):231–242. https://doi.org/10.1002/cne.21230
Mollo E, Fontana A, Roussis V, Polese G, Amodeo P, Ghiselin MT (2014) Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front Chem 2:92. https://doi.org/10.3389/fchem.2014.00092
Mollo E, Garson MJ, Polese G, Amodeo P, Ghiselin MT (2017) Taste and smell in aquatic and terrestrial environments. Nat Prod Rep 34(5):496–513. https://doi.org/10.1039/c7np00008a
Moody MF, Parriss JR (1961) The discrimination of polarized light by octopus: a behavioural and morphological study. Zeitschrift für vergleichende Physiologie 44(3):268–291. https://doi.org/10.1007/BF00298356
Moody MF, Robertson JD (1960) The fine structure of some retinal photoreceptors. J Biophys Biochem Cytol 7(1):87–92
Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86(2):409–433. https://doi.org/10.1152/physrev.00021.2005
Moroz LL (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74(3):177–190. https://doi.org/10.1159/000258665
Moroz LL, Kohn AB (2016) Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 371(1685):20150041. https://doi.org/10.1098/rstb.2015.0041
Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant eyes in giant squid. Curr Biol 22(8):683–688. https://doi.org/10.1016/j.cub.2012.02.031
Norman MD, Finn J, Tregenza T (2001) Dynamic mimicry in an Indo-Malayan octopus. Proc Biol Sci 268(1478):1755–1758. https://doi.org/10.1098/rspb.2001.1708
Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47(2):241–307. https://doi.org/10.1111/j.1469-185X.1972.tb00975.x
Piper DR, Lucero MT (1999) Calcium signalling in squid olfactory receptor neurons. Biol Signals Recept 8(6):329–337. https://doi.org/10.1159/000014606
Polese G, Winlow W, Di Cosmo A (2014) Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare. J Aquat Anim Health 26(4):285–294. https://doi.org/10.1080/08997659.2014.945047
Polese G, Bertapelle C, Di Cosmo A (2015) Role of olfaction in Octopus vulgaris reproduction. Gen Comp Endocrinol 210:55–62. https://doi.org/10.1016/j.ygcen.2014.10.006
Polese G, Bertapelle C, Di Cosmo A (2016) Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization. Biol Open 5(5):611–619. https://doi.org/10.1242/bio.017764
Rowell CHF (1963) Excitatory and inhibitory pathways in the arm of Octopus. J Exp Biol 40(2):257–270
Ruth P, Schmidtberg H, Westermann B, Schipp R (2002) The sensory epithelium of the tentacles and the rhinophore of Nautilus pompilius L. (cephalopoda, nautiloidea). J Morphol 251(3):239–255. https://doi.org/10.1002/jmor.1086
Scotto-Lomassese S, Strambi C, Aouane A, Strambi A, Cayre M (2002) Sensory inputs stimulate progenitor cell proliferation in an adult insect brain. Curr Biol 12(12):1001–1005
Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523(9):1297–1317. https://doi.org/10.1002/cne.23755
Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18(5):337–342. https://doi.org/10.1016/j.cub.2008.01.056
Stubbs AL, Stubbs CW (2016) Spectral discrimination in color blind animals via chromatic aberration and pupil shape. Proc Natl Acad Sci USA 113(29):8206–8211. https://doi.org/10.1073/pnas.1524578113
Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B (2001) Control of octopus arm extension by a peripheral motor program. Science 293(5536):1845–1848. https://doi.org/10.1126/science.1060976
Sumbre G, Fiorito G, Flash T, Hochner B (2005) Neurobiology: motor control of flexible octopus arms. Nature 433(7026):595–596. https://doi.org/10.1038/433595a
Sumbre G, Fiorito G, Flash T, Hochner B (2006) Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr Biol 16(8):767–772. https://doi.org/10.1016/j.cub.2006.02.069
Tanner AR, Fuchs D, Winkelmann IE, Gilbert MTP, Pankey MS, Ribeiro ÂM, Kocot KM, Halanych KM, Oakley TH, da Fonseca RR, Pisani D, Vinther J (2017) Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the mesozoic marine revolution. Proc R Soc B Biol Sci 284(1850). https://doi.org/10.1098/rspb.2016.2818
Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332. https://doi.org/10.1146/annurev.physiol.010908.163209
Vitti JJ (2013) cephalopod cognition in an evolutionary context: implications for ethology. Biosemiotics 6(3):393–401. https://doi.org/10.1007/s12304-013-9175-7
von Kölliker RA (1844) Entwicklungsgeschichte der Tintenfische. German
Von Zernoff D (1869) Ueber das Geruchsorgan der cephalopoden. Bulletin de la Société Imperiale des Naturalistes de Moscou 42:72–90
Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. Biol Bull 216(3):293–306. https://doi.org/10.1086/BBLv216n3p293
Watkinson GB (1909) Untersuchungen tiber die sogenannten Geruchsorgane der Cephalopoden. Jena Z Med Naturw 44:353–414
Wells MJ (1964) Detour experiments with octopuses. J Exp Biol 41(3):621–642
Wells MJ (1978) Octopus. Physiology and behaviour of an advanced invertebrate. Chapman and Hall, London
Wells MJ, Young JZ (1975) The subfrontal lobe and touch learning in the octopus. Brain Res 92(1):103–121
Wells MJ, Freeman NH, Ashburner M (1965) Some experiments on the chemotactile sense of octopuses. J Exp Biol 43(3):553–563
Williamson R, Chrachri A (2007) A model biological neural network: the cephalopod vestibular system. Philos Trans R Soc Lond B Biol Sci 362(1479):473–481. https://doi.org/10.1098/rstb.2006.1975
Winters GC, Kohn AB, Laux R, Stern N, Bostwick C, Di Cosmo A, Hochner B, Moroz LL (2017) Molecular organization of octopus brains: first insights into unique memory center signaling. Integr Comp Biol 57:E180
Wolken JJ (1958) Retinal structure: moilusc cephalopods: Octopus, Sepia. J Biophys Biochem Cytol 4(6):835–838
Young JZ (1962) The retina of cephalopods and its degeneration after optic nerve section. Philos Trans R Soc Lond Ser B Biol Sci 245(718):1–18. https://doi.org/10.1098/rstb.1962.0004
Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, New York
Young LD (1995) Reproduction of F1 Meishan, Fengjing, Minzhu, and Duroc gilts and sows. J Anim Sci 73(3):711–721. https://doi.org/10.2527/1995.733711x
Zatylny C, Gagnon J, Boucaud-Camou E, Henry J (2000) ILME: a waterborne pheromonal peptide released by the eggs of Sepia officinalis. Biochem Biophys Res Commun 275(1):217–222. https://doi.org/10.1006/bbrc.2000.3286
Zhang Y, Shi F, Song J, Zhang X, Yu S (2015) Hearing characteristics of cephalopods: modeling and environmental impact study. Integr Zool 10(1):141–151. https://doi.org/10.1111/1749-4877.12104
Zullo L, Sumbre G, Agnisola C, Flash T, Hochner B (2009) Nonsomatotopic organization of the higher motor centers in octopus. Curr Biol 19(19):1632–1636. https://doi.org/10.1016/j.cub.2009.07.067
Acknowledgment
We would like to acknowledge Single Center Research Grant in Neuroscience from Compagnia di San Paolo (Protocol 29-11).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Di Cosmo, A., Maselli, V., Polese, G. (2018). Octopus vulgaris: An Alternative in Evolution. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-92486-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92485-4
Online ISBN: 978-3-319-92486-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)