Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 13))

  • 898 Accesses

Abstract

Chitin of marine invertebrate’s origin (cephalopod molluscs, crustaceans) has been traditionally well studied as the main source for manufacturing of its derivate chitosan. Nowadays, the trend is directed to naturally prefabricated three dimensional (3D) chitinous scaffolds which can be simply isolated from diverse marine demosponges. Such ready to use constructs have been reported as applicable as adsorbents, scaffolds for development of composite materials and biocompatible matrices for tissue engineering of diverse human mesenchymal stromal cells. This chapter includes huge list of references on chitin properties and applications including recently published books and reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Takahashi M, Tokura S et al (2004) Cartilage-scaffold composites produced by bioresorbable β-chitin sponge with cultured rabbit chondrocytes. Tissue Eng 10:585–594

    Article  CAS  Google Scholar 

  • Aerts JMFG (1996) A human chitinase, its recombinant production, its use for decomposing chitin, its use in therapy of prophylaxis against infection diseases, WO/1996/040940

    Google Scholar 

  • Alvarez FJ (2014) The effect of chitin size, shape, source and purification method on immune recognition. Molecules 19(4):4433–4451

    Article  CAS  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  • Arae K, Morita H, Unno H, Motomura K et al (2018) Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Sci Rep 8:11721

    Article  CAS  Google Scholar 

  • Aranaz I, Mengibar M, Harris R, Panos I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  • Aranaz I, Acosta N, Civera C, Elorza B et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10(2):213

    Article  CAS  Google Scholar 

  • Azuma K, Izumi R, Osaki T et al (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6(1):104–142

    Article  CAS  Google Scholar 

  • Badwan AA, Rashid I, Al Omari MMH, Fouad H, Darras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13(3):1519–1547

    Article  CAS  Google Scholar 

  • Bechman N, Ehrlich H, Eisenhofer G et al (2018) Anti-tumorigenic and anti-metastatic activity of the sponge-derived marine drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma in vitro. Mar Drugs 16:172

    Article  CAS  Google Scholar 

  • Becker KL, Aimanianda V, Wang X, Gresnigt MS et al (2016) Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the fc-Îł receptor/Syk/PI3K pathway. MBio 7(3):e01823–e01815

    Article  Google Scholar 

  • Boot RG, Renkema GH, Strijland A et al (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 44:26252–26256

    Article  Google Scholar 

  • Brunner E, Ehrlich H, Schupp P et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    Article  CAS  Google Scholar 

  • Bueter CL, Specht CA, Levitz SM (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080

    Article  CAS  Google Scholar 

  • Collini FJ (1991) Invited comments. Eur J Plat Surg 14:209–210

    Google Scholar 

  • Coltelli MB, Cinelli P, Gigante V, Aliotta L et al (2019) Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: dispersion and thermo-mechanical properties. Int J Mol Sci 20(3):504

    Article  CAS  Google Scholar 

  • Cruz-Baraza JA, Carballo JL, Rocha-Olivares A et al (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS One 7:e42049

    Article  CAS  Google Scholar 

  • Da Silva CA, Chalouni C, Williams A et al (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182:3573–3582

    Article  CAS  Google Scholar 

  • Da Silva CA, Pochard P, Lee CG, Elias JA (2010) Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med 182(12):1482–1491

    Article  CAS  Google Scholar 

  • Dworkin J (2018) Detection of fungal and bacterial carbohydrates: do the similar structures of chitin and peptidoglycan play a role in immune dysfunction? PLoS Pathog 14(10):e1007271

    Article  CAS  Google Scholar 

  • Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52(7–8):661–699

    Article  Google Scholar 

  • Ehrlich H (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In: Ruys AJ (ed) Biomimetic biomaterials: structure and applications. Woodhead Publishing, Philadelphia, pp 47–67

    Google Scholar 

  • Ehrlich H (2018) Chitin of poriferan origin as a unique biological material. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 2. Wiley–VCH, Verlag, Weinheim, pp 821–854

    Chapter  Google Scholar 

  • Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Hajdu E (ed) Porifera research: biodiversity, innovation & sustainability. Museu Nacional, Rio de Janeiro

    Google Scholar 

  • Ehrlich H, Krautter M, Hanke T et al (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool (Mol Dev Evol) 308B:473–483

    Article  CAS  Google Scholar 

  • Ehrlich H, Maldonado M, Spindler K-D et al (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool (Mol Dev Evol) 308B:347–356

    Article  CAS  Google Scholar 

  • Ehrlich H, Simon P, Carrillo–Cabrera W et al (2010a) Insights into chemistry of biological materials: newly discovered silica–aragonite–chitin biocomposites in demosponges. Chem Mater 22(4):1462–1471

    Article  CAS  Google Scholar 

  • Ehrlich H, Ilan M, Maldonado M et al (2010b) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Bol Macromol 47:132–140

    Article  CAS  Google Scholar 

  • Ehrlich H, Kaluzhnaya OV, Brunner E et al (2013a) Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J. Struct Biol 183:474–483

    Article  CAS  Google Scholar 

  • Ehrlich H, Rigby JK, Botting JP et al (2013b) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    Article  CAS  Google Scholar 

  • Ehrlich H, Kaluzhnaya OV, Tsurkan MV et al (2013c) First report on chitinous holdfast in sponges (Porifera). Proc R Soc B 280:20130339

    Article  Google Scholar 

  • Ehrlich H, Bazhenov VV, Debitus C et al (2017) Isolation and identification of chitin from heavy mineralized skeleton of Suberea clavata (Verongida: Demospongiae: Porifera) marine demosponge. Int J Biol Macromol 104:1706–1712

    Article  CAS  Google Scholar 

  • Ehrlich H, Shaala LA, Youssef DTA et al (2018) Discovery of chitin in skeletons of non–verongiid Red Sea demosponges. PLoS One 13(5):e0195803

    Article  CAS  Google Scholar 

  • Elias JA, Homer RJ, Hamid Q et al (2005) Chitinases and chitinase-like proteins in T(H)2 inflammation and astma. J Allergy Clin Immunol 116:497–500

    Article  CAS  Google Scholar 

  • Elieh D, Komi A, Sharma L, Charles S, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223

    Article  CAS  Google Scholar 

  • Escott GM, Adams DJ (1995) Chitinase activity in human serum and leukocytes. Infect Immun 63(12):4770–4773

    CAS  Google Scholar 

  • Freier T, Montenegro R, Koh HS et al (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632

    Article  CAS  Google Scholar 

  • Fromont J, Żółtowska-Aksamitowska S, Galli R et al (2019) New family and genus of a Dendrilla-like sponge with characters of Verongiida. Part II. Discovery of chitin in the skeleton of Ernstilla lacunosa. Zool Anz 280:21–29

    Article  Google Scholar 

  • Green D (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010

    Article  CAS  Google Scholar 

  • Green D, Walsh D, Mann S et al (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30(6):810–815

    Article  CAS  Google Scholar 

  • Huang Y, Zhong Z, Duan B, Zhang L et al (2014) Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B 2:3427–3432

    Article  CAS  Google Scholar 

  • Jayakumar R, Chennazhi KP, Srinivasan S et al (2010) Chitin scaffolds in tissue engineering. Int J Mol Sci 2011 12(3):1876–1887

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  Google Scholar 

  • Kadokawa J (2016) Preparation and grafting functionalization of self-assembled chitin nanofiber film. Coatings 6:27

    Article  CAS  Google Scholar 

  • Khor E (2001) Chitin: fulfilling a biomaterials promise. Elsevier, New York

    Google Scholar 

  • Khor E (2002) Chitin: a biomaterial in waiting. Curr Op Solid State Mater Sci 6:313–317

    Article  CAS  Google Scholar 

  • Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  • Khosravi AR, Erle DJ (2016) Chitin-induced airway epithelial cell innate immune responses are inhibited by carvacrol/thymol. PLoS One 11(7):e0159459

    Article  CAS  Google Scholar 

  • Kim SK (2010) Chitin, chitosan, oligosaccharides and their derivatives. CRC Press, New York

    Book  Google Scholar 

  • Klinger C, Żółtowska-Aksamitowska S, Wysokowski M et al (2019) Express method for isolation of ready-to-use 3d chitin scaffolds from Aplysina archeri (Aplysineidae: Verongiida) demosponge. Mar Drug 17:131

    Article  CAS  Google Scholar 

  • Knorr D (1984) Use of chitinous polymers in food. Food Technol 38:85–89

    CAS  Google Scholar 

  • Koch BEV, Stougaard J, Herman P, Spaink HP (2015) Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 25(5):469–482

    Article  CAS  Google Scholar 

  • Kogiso M, Nishiyama A, Shinohara T, Masataka Nakamura M et al (2011) Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia. Leukoc Biol 90(1):167–176

    Article  CAS  Google Scholar 

  • Kojima K, Okamoto Y, Miyatake K et al (1998) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37:109–113

    Article  CAS  Google Scholar 

  • Kojima K, Okamoto Y, Kojima K et al (2004) Miyatake, K., Fujise, H., Shigemasa, Y., Minami, S. Effects of chitin and chitosan on collagen synthesis in wound healing. J Vet Med Sci 66:1595–1598

    Article  CAS  Google Scholar 

  • Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129

    Article  Google Scholar 

  • Koller B, MĂĽller-Wiefel AS, Rupec R, Korting HC, Ruzicka T (2011) Chitin modulates innate immune responses of keratinocytes. PLoS One 6(2):e16594

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    Article  CAS  Google Scholar 

  • Kwak BK, Shim HJ, Han SM et al (2005) Chitin-based embolic materials in the renal artery of rabbits: pathologic evaluation of an absorbable particulate agent. Radiology 236:151–158

    Article  Google Scholar 

  • Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50(1):22–30

    Article  CAS  Google Scholar 

  • Li X, Min M, Du N, Ying Gu Y et al (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023

    Google Scholar 

  • Love GD, Grosjean E, Stalvies C et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457(7230):718–721

    Article  CAS  Google Scholar 

  • Madhumathi K., Sudheesh Kumar PT, Abhilash S et al. (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci 21:807–813

    Google Scholar 

  • Maeda M, Iwase H, Kifune K (1984) Characteristics of chitin for orthopedic use. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, Orlando

    Google Scholar 

  • Mir M, Ali MN, Barakullah A et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21

    Article  CAS  Google Scholar 

  • Morganti P (2010) Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol 3:5–13

    Article  CAS  Google Scholar 

  • Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeticals. Clin Dermatol 26:334–340

    Article  Google Scholar 

  • Morganti P, Morganti G, Morganti A (2011) Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society. Nanotechnol Sci Appl 4:123–129

    Article  CAS  Google Scholar 

  • Morganti P, Palombo P, Palombo M, Giuseppe Fabrizi G et al (2012) A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look. Clin Cosmet Investig Dermatol 5:213–220

    Article  CAS  Google Scholar 

  • Mushi NE, Utsel S, Lars A, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem 2:99

    Article  CAS  Google Scholar 

  • Mutsenko VV, Bazhenov VV, Rogulska O et al (2017a) 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. Int J Biol Macromol 104:1966–1974

    Article  CAS  Google Scholar 

  • Mutsenko VV, Gryshkov O, Lauterboeck L et al (2017b) Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int J Biol Macromol 104:1955–1965

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8(2):292–312

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, El Mehtedi M, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano- chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar Drugs 12(11):5468–5502

    Article  CAS  Google Scholar 

  • Nakashima K, Kimura S, Ogawa Y, Watanabe S et al (2018) Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun 9:3402

    Article  CAS  Google Scholar 

  • Noishiki Y, Takami H, Nishiyama Y et al (2003) Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4:869–899

    Article  CAS  Google Scholar 

  • Odier A (1823) MĂ©moir sur la composition chimique des parties cornĂ©es des insectes. MĂ©moirs de la SocietĂ© d’Histoire Naturelle 1:29–42

    Google Scholar 

  • Ohshima Y, Nishino K, Yonekura Y et al (1987) Clinical applications of chitin non-woven fabric as wound dressing. Eur J Plast Surg 10:66–69

    Article  Google Scholar 

  • Ohshima Y, Nishino K, Okuda R et al (1991) Clinical application of new chitin non-woven fabric and new chitin sponge sheet as wound dressing. Eur J Plat Surg 14:207–211

    Google Scholar 

  • Okamoto Y, Minami S, Matsuhashi A et al (1993) Application of polymeric N-acetyl-D-glucosamine (chitin) to veterinary practice. J Vet Med Sci 55:743–743

    Article  CAS  Google Scholar 

  • Okamoto Y, Shibazaki K, Minami S et al (1995) Evaluation of chitin and chitosan on open wound healing in dogs. J Vet Med Sci 57(5):201–205

    Article  Google Scholar 

  • Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182

    Article  CAS  Google Scholar 

  • Ozdemir C, Yazi D, Aydogan M et al (2006) Treatment with chitin microparticles is protective against lung histopathology in a murine asthma model. Clin Exp Allergy 36:960–968

    Article  CAS  Google Scholar 

  • Petrenko I, Bazhenov VV, Galli R et al (2017) Chitin of poriferan origin and the bioelectrometallurgy of copper/copper oxide. Int J Biol Macromol 104:1626–1632. https://doi.org/10.1016/j.ijbiomac.2017.01.084

    Article  CAS  Google Scholar 

  • Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol1 9(8):706–712

    Article  CAS  Google Scholar 

  • Prudden JF, Migel P, Hanson P et al (1970) The discovery of a potent pure chemical wound-healing accelerator. Am J Surg 119:560–564

    Article  CAS  Google Scholar 

  • Reese TA, Liang H-E, Tager AD et al (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–97

    Article  CAS  Google Scholar 

  • Reitner J, Wörheide G (2002) Non-lithistid fossil Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation Systema Porifera. In: Hooper JNA, Rob WM (eds) A guide to the classification of sponges. Van Soest Kluwer Academic/Plenum Publishers, New York, pp 52–68

    Google Scholar 

  • Roberts GAF (1992) Chitin chemistry. Macmillan Press Ltd, London

    Book  Google Scholar 

  • Roy RM, WĂĽthrich M, Bruce S, Klein BS (2012) Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. J Immunol 189(5):2545–2552

    Article  CAS  Google Scholar 

  • Saimoto H, Takamori Y, Morimoto M et al (1997) Biodegradation of chitin with enzymes and vital components. Macromol Symp 120:11–18

    Article  CAS  Google Scholar 

  • Schmidt RJ, Chung LY, Andrews AM et al (1993) Biocompatibility of wound management products: a study of the effects of various polysaccharides on Murine L929 fibroblast proliferation and macrophage respiratory burst. J Pharm Pharmacol 45:508–513

    Article  CAS  Google Scholar 

  • Shaala LA, Asfour HZ, Youssef DTA et al (2019) New source of 3D chitin scaffolds: the Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 17:92

    Article  CAS  Google Scholar 

  • Shen CR, Juang HH, Chen HS, Yang CJ et al (2015) The correlation between chitin and acidic mammalian chitinase in animal models of allergic asthma. Int J Mol Sci 16(11):27371–27377

    Article  CAS  Google Scholar 

  • Singh R, Singh D (2014) Chitin membranes containing silver nanoparticles for wound dressing application. Int Wound J 11:264–268

    Article  Google Scholar 

  • Singh R, Chacharkar MP, Mathur AK (2008) Chitin membrane for wound dressing application – preparation, characterisation and toxicological evaluation. Int Wound J 5:665–673

    Article  Google Scholar 

  • Stawski D (2017) Thermogravimetric analysis of sponge chitins in thermooxidative conditions. In Extreme biomimetics, pp 191–203. https://doi.org/10.1007/978-3-319-45340-8_7

  • Stawski D, Rabiej S, Herczynska L et al (2008) Thermogravimetric analysis of chitins of different origin. J Therm Anal Calorim 93:489–494

    Article  CAS  Google Scholar 

  • Struszczyk MH (2006) Global requirements for medical applications of chitin and its derivatives. Pol Chitin Soc Monogr XI:95–102

    Google Scholar 

  • Sudheesh Kumar PT, Lakshmanan VK, Raj M et al (2013) Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30:523–527

    Article  CAS  Google Scholar 

  • Sugintha W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479

    Article  CAS  Google Scholar 

  • Tabata E, Kashimura A, Kikuchi A, Hiromasa Masuda H et al (2018) Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep 8:1461

    Article  CAS  Google Scholar 

  • Tanaka Y, Tanioka S, Tanaka M et al (1997) Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials 18:591–595

    Article  CAS  Google Scholar 

  • Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575

    Article  CAS  Google Scholar 

  • Vacelet J, Erpenbeck D, Diaz C et al (2019) New family and genus for Dendrilla-like sponges with characters of Verongiida. Part I redescription of Dendrilla lacunosa Hentschel 1912, diagnosis of the new family Ernstillidae and Ernstilla n.g. Zool Anz 280:14–20

    Article  Google Scholar 

  • Van Dyken SJ, Mohapatra A, Nussbaum JC, Ari B, Molofsky AB et al (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 (ILC2) and γδ T cells. Immunity 40(3):414–424

    Article  CAS  Google Scholar 

  • Wan ACA, Khor E, Hastings GW (1998) Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J Biomed Mater Res: Appl Biomat 41:541–548

    Article  CAS  Google Scholar 

  • Wang Y, Fu C, Wu Z et al (2017) A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydr Polym 174:723–730

    Article  CAS  Google Scholar 

  • Wiesner DL, Specht CA, Chrono K, Lee CK et al (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11(3):e1004701

    Article  CAS  Google Scholar 

  • Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan—value-added products from mushroom waste. J Agric Food Chem 52(26):7905–7910

    Article  CAS  Google Scholar 

  • Wu S, Duan B, Lu A (2017) Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydr Polym 174:830–840

    Article  CAS  Google Scholar 

  • Wysokowski M, Bazhenov VV, Tsurkan MV et al (2013a) Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int J Biol Macromol 62:94–100

    Article  CAS  Google Scholar 

  • Wysokowski M, Motylenko M, Stöcker et al (2013b) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1:6469–6476

    Article  CAS  Google Scholar 

  • Wysokowski M, Materna K, Walter J et al (2015) Solvothermal synthesis of chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites with hydrophobic properties. Int J Biol Macromol 78:224–229

    Article  CAS  Google Scholar 

  • Wysokowski M, Jesionowski T, Ehrlich H (2018) Biosilica as a source for inspiration in biological materials science. Am Mineral 103:665–691. https://doi.org/10.2138/am-2018-6429

    Article  Google Scholar 

  • Xue F, Wu E, Zhang P et al (2015) Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation. Neural Regen Res 10:104–111

    Article  CAS  Google Scholar 

  • Yang TL (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12(3):1936–1963

    Article  CAS  Google Scholar 

  • Yeul VS, Rayalu SS (2013) Unprecedented chitin and chitosan: a chemical overview. J Polym Environ 21(2):606–614

    Article  CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang J, Liu L et al (2015) Preparation, assessment, and comparison of α-chitin nan fiber films with different surface charges. Nanoscale Res Lett 10:226

    Article  CAS  Google Scholar 

  • Żółtowska-Aksamitowska S, Shaala LA, Youssef DTA et al (2018a) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16:68

    Article  CAS  Google Scholar 

  • Żółtowska-Aksamitowska S, Tsurkan MV, Lim S-C et al (2018b) The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 112:1021–1028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrlich, H. (2019). Chitin. In: Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-92483-0_24

Download citation

Publish with us

Policies and ethics