Skip to main content

Rubber-Like Bioelastomers of Marine Origin

  • Chapter
  • First Online:
Marine Biological Materials of Invertebrate Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 13))

  • 872 Accesses

Abstract

Opposite shells of bivalve molluscs articulate due to existence of the hinge ligament. This by the mantle isthmus secreted structure is of proteinaceous nature. The hinge ligament possesses two parts. The outer flexible part, which serves as a hinge, grips the two valves tightly along the hinge line. The elastic material in the form of block acts as the inner part, which role is making a gape to relax the adductor muscle. Hereby, I take in account the description of the chemistry and structural properties of molluscs hinge ligaments as bioelastomers of marine invertebrates origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RMN (1966) Rubber-like properties of the inner hinge-ligament of Pectinidae. J Exp Biol 44:119–130

    CAS  Google Scholar 

  • Alexander RMN (1968) Animal mechanics. University of Washington Press, Seattle. 346 pp

    Google Scholar 

  • Alexander RMN (2002) Functions of elastomeric proteins in animals. In: Shewry PR, Tatham AS, Bailey AJ (eds) Elastomeric proteins: structures, biomechanical properties, and biological roles. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersen SO (1967) Isolation of a new type of cross link from the hinge ligament protein of molluscs. Nature 216:1029–1030

    Article  CAS  Google Scholar 

  • Bevelander G, Nakahara H (1969) An electron microscope study of the formation of the ligament of Mytilus eduliis and Pinctada radiata. Calcif Tissue Res 4:101–112

    Article  CAS  Google Scholar 

  • Crenshaw MA (1972) The soluble matrix from Mercenaria mercenaria shell. Biomineralization 6:6–11

    CAS  Google Scholar 

  • Dall WH (1889) On the hinge of the pelecypods and its development, with an attempt toward a better subdivision of the group. Am J Sci 138:445–462

    Article  Google Scholar 

  • David L (1998) Mollusc shell structures: novel design strategies for synthetic materials. Curr Opinion Solid State Mater Sci 3:232–236

    Article  Google Scholar 

  • de Paula SM, Silveira M (2009) Studies on molluscan shells: contributions from microscopic and analytical methods. Micron 40:669–690

    Article  Google Scholar 

  • Dungan CF (1987) Pathological and microbiological study of bacterial erosion of the hinge ligament in cultured juvenile Pacific oysters, Crassostrea gigas. Master’s thesis. University of Washington, Seattle

    Google Scholar 

  • Dungan CF, Elston RA (1988) Histopathological and ultrastructural characteristics of bacterial destruction of hinge ligaments in cultured juvenile Pacific oysters, Crassotrea gigas. Aquaculture 72:1–14

    Article  Google Scholar 

  • Dungan CF, Elston RA, Schiewe M (1989) Evidence for colonization and destruction of hinge ligaments in cultured juvenile Pacific oysters (Crassostrea gigas) by Cytophaga-like bacteria. Appl Environ Microbiol 55:1128–1135

    CAS  Google Scholar 

  • Galtsoff PS (1964) The American oyster Crassostrea virginica (Gmelin). US Fish Wildl Serv Fish Bull 64:1–480

    Google Scholar 

  • Hare PE (1963) Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science 139:216–217

    Article  CAS  Google Scholar 

  • Kahler GA, Fisher FM, Sass RL (1976a) The chemical composition and mechanical properties of the hinge ligament in bivalve molluscs. Biol Bull 151:161–181

    Article  CAS  Google Scholar 

  • Kahler GA, Sass RL, Fisher FM Jr (1976b) The fine structure and crystallography of the hinge ligament of Spisula solidissima (Mollusca: Bivalvia: Mactridae). J Comp Phys 109:209–220

    Article  CAS  Google Scholar 

  • Kelly RE, Rice RV (1967) Abductin: a rubber-like protein from the internal triangular hinge ligament of Pecten. Science 155(3759):208–210

    Article  CAS  Google Scholar 

  • Kikuchi Y, Tamiya N, Nozawa T et al (1982) Non-destructive detection of methionine sulfoxide in the resilium of a surf clam by solid-state 13C-NMR spectroscopy. Eur J Biochem 125:575–577

    Article  CAS  Google Scholar 

  • Kikuchi Y, Tsuchikura O, Hirama M et al (1987) Desmosine and isodesmosine as cross-links in the hinge-ligament protein of bivalves 3.3′-methylenebistyrosine as an artefact. Eur J Biochem 164:397–402

    Article  CAS  Google Scholar 

  • Kikuchi Y, Higashi K, Tamiya N (1988) Diastereomers of methionine S-oxide in the hinge-ligament proteins of molluscan bivalve species. Bull Chem Soc Jpn 61:2083–2087

    Article  CAS  Google Scholar 

  • Kubota K, Tsuchihashi Y, Kogure T et al (2017) Structural and functional analyses of a TIMP and MMP in the ligament of Pinctada fucata. J Struct Biol 199:216–224

    Article  CAS  Google Scholar 

  • Marin F, Luquet G, Marie B et al (2008) Molluscan shell proteins: primary structure, origin and evolution. Curr Top Dev Biol 80:209–276

    Article  CAS  Google Scholar 

  • Marsh M, Hopkins G, Fisher F et al (1976) Structure of the molluscan bivalve hinge ligament, a unique calcified elastic tissue. J Ultrastruct Res 54:445–450

    Article  CAS  Google Scholar 

  • Owen G, Trueman ER, Yonge CM (1953) The ligament in the lamellibranchia. Nature (Lond) 171:73–75

    Article  CAS  Google Scholar 

  • Poitevin P, Thébault J, Schöne BR, Jolivet A, Lazure P, Chauvaud L (2018) Ligament, hinge, and shell cross-sections of the Atlantic surfclam (Spisula solidissima): promising marine environmental archives in NE North America. PLoS One 13(6):e0199212

    Article  Google Scholar 

  • Stenzel HB (1962) Aragonite in the resilium of oysters. Science 136:1121–1122

    Article  CAS  Google Scholar 

  • Suzuki M, Kogure T, Sakuda S et al (2015) Identification of ligament intra-crystalline peptide (LICP) from the hinge ligament of the bivalve, Pinctada fucata. Mar Biotechnol 17(2):153–161

    Article  CAS  Google Scholar 

  • Trueman ER (1949) The ligament of Tellina tenuis. Proc Zool Soc Lond 119:717–742

    Article  Google Scholar 

  • Trueman ER (1950a) Observations on the ligament of Mylilus edulis. Quart J Micr Sci 91:225

    CAS  Google Scholar 

  • Trueman ER (1950b) Quinone-tanning in the mollusca. Nature (Lond) 165:297–398

    Article  Google Scholar 

  • Trueman ER (1951) The structure, development, and operation of the hinge ligament of Ostrea edulis. Quart J Micr Sci 92:129–140

    Google Scholar 

  • Trueman ER (1953) Observations on certain mechanical properties of the ligament of Pecten. J Exp Biol 30:453–467

    Google Scholar 

  • Trueman ER (1964) Adaptive morphology in paleoecological interpretation. In: Embrie J, Newell N (eds) Approaches to paleoecology. Wiley, New York

    Google Scholar 

  • Trueman ER (1969) Ligament. In: Moore RC (ed) Treatise on invertebrate paleontology, part N, vol 1. Geological Society of America, Boulder, and University of Kansas, Lawrence

    Google Scholar 

  • Zhang G-S (2007) Photonic crystal type structure in bivalve ligament of Pinctada maxima. Chin Sci Bull 52(8):1136–1138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehrlich, H. (2019). Rubber-Like Bioelastomers of Marine Origin. In: Marine Biological Materials of Invertebrate Origin. Biologically-Inspired Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-92483-0_14

Download citation

Publish with us

Policies and ethics