Algorithms for Inferring Context-Sensitive L-Systems

  • Ian McQuillanEmail author
  • Jason Bernard
  • Przemyslaw Prusinkiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)


Lindenmayer systems (L-systems) are parallel string rewriting systems (grammars). By attaching a graphical interpretation to the symbols in the derived strings, they can be applied to create simulations of temporal processes, and have been especially successful in the modeling of plants. With the objective of automatically inferring L-system models in mind, here we study the inductive inference problem: the inference of models from observed strings. Exact algorithms are given for inferring L-systems that can generate input strings for both deterministic context-free and deterministic context-sensitive L-systems. The algorithms run in polynomial time assuming a fixed number of alphabet symbols and fixed context size. Furthermore, if a specific matrix calculated from the input words is invertible, then a context-sensitive L-system can be automatically created (if it exists) in polynomial time without assuming any fixed parameters.



The research of all authors was supported in part by a grant from the Plant Phenotyping and Imaging Research Centre (P2IRC), and in part by grants from Natural Sciences and Engineering Research Council of Canada (I. McQuillan grant 2016–06172, J. Bernard scholarship, P. Prusinkiewicz grant 2014–05325).


  1. 1.
    Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press Inc., New York (1980)zbMATHGoogle Scholar
  2. 2.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990). Scholar
  3. 3.
    Prusinkiewicz, P.: Graphical applications of L-systems. In: Proceedings of Graphics Interface 1986/Vision Interface 1986, pp. 247–253 (1986)Google Scholar
  4. 4.
    Prusinkiewicz, P.: Designing and growing virtual plants with L-systems. In: Proceedings of the XXVI International Horticultural Congress, vol. 630, pp. 15–28. Acta Horticulturae (2004)Google Scholar
  5. 5.
    Prusinkiewicz, P., Mündermann, L., Karwowski, R., Lane, B.: The use of positional information in the modeling of plants. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 289–300. ACM (2001)Google Scholar
  6. 6.
    Ben-Naoum, F.: A survey on L-system inference. INFOCOMP J. Comput. Sci. 8(3), 29–39 (2009)Google Scholar
  7. 7.
    Runqiang, B., Chen, P., Burrage, K., Hanan, J., Room, P., Belward, J.: Derivation of L-system models from measurements of biological branching structures using genetic algorithms. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, pp. 514–524. Springer, Heidelberg (2002). Scholar
  8. 8.
    Sirault, X., Fripp, J., Paproki, A., Kuffner, P., Nguyen, C., Li, R., Daily, H., Guo, J., Furbank, R.: Plantscan\(^\text{TM}\): a three-dimensional phenotyping platform for capturing the structural dynamic of plant development and growth. In: 7th International Conference on Functional-Structural Plant Models, pp. 45–48 (2013)Google Scholar
  9. 9.
    Doucet, P.G.: The syntactic inference problem for dol-sequences. In: Rozenberg, G., Salomaa, A. (eds.) L Systems. LNCS, vol. 15, pp. 146–161. Springer, Heidelberg (1974). Scholar
  10. 10.
    Nakano, R., Yamada, N.: Number theory-based induction of deterministic context-free L-system grammar. In: International Conference on Knowledge Discovery and Information Retrieval, SCITEPRESS, pp. 194–199 (2010)Google Scholar
  11. 11.
    Jürgensen, H., Lindenmayer, A.: Inference algorithms for developmental systems with cell lineages. Bull. Math. Biol. 49(1), 93–123 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feliciangeli, H., Herman, G.T.: Algorithms for producing grammars from sample derivations: a common problem of formal language theory and developmental biology. J. Comput. Syst. Sci. 7(1), 97–118 (1973)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7(1), 67–82 (1997)zbMATHGoogle Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). Scholar
  15. 15.
    Herman, G.T., Rozenberg, G.: Developmental Systems and Languages. North-Holland Publishing Company, Oxford (1975)zbMATHGoogle Scholar
  16. 16.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar
  17. 17.
    Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math. Comput. 28(125), 231–236 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990). Computational algebraic complexity editorialMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ian McQuillan
    • 1
    Email author
  • Jason Bernard
    • 1
  • Przemyslaw Prusinkiewicz
    • 2
  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations