Skip to main content

An FPGA Implementation of a Distributed Virtual Machine

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10867))

  • 494 Accesses

Abstract

An expression in a functional programming language can be compiled into a massively redundant, spatially distributed, concurrent computation called a distributed virtual machine (DVM). A DVM is comprised of bytecodes reified as actors undergoing diffusion on a two-dimensional grid communicating via messages containing encapsulated virtual machine states (continuations). Because the semantics of expression evaluation are purely functional, DVMs can employ massive redundancy in the representation of the heap to help ensure that computations complete even when large areas of the physical host substrate have failed. Because they can be implemented as asynchronous circuits, DVMs also address the well known problem affecting traditional machine architectures implemented as integrated circuits, namely, clock networks consuming increasingly large fractions of area as device size increases. This paper describes the first hardware implementation of a DVM. This was accomplished by compiling a VHDL specification of a special purpose distributed memory multicomputer with a mesh interconnection network into a globally asynchronous, locally synchronous (GALS) circuit in an FPGA. Each independently clocked node combines a processor based on a virtual machine for compiled Scheme language programs, with just enough local memory to hold a single heap allocated object and a continuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This brings to mind the very interesting result concerning the ability of asynchronous cellular automata to emulate synchronous cellular automata with negligible slowdown [8].

  2. 2.

    Deep Thought from The Hitch Hiker’s Guide to the Galaxy comes to mind.

  3. 3.

    Despite this apparent limitation, functional programming languages are extremely expressive and modern compilers exploit referential transparency to perform powerful code optimizations.

  4. 4.

    The first integrated circuit implementation of a processor customized for efficient execution of compiled Lisp programs was described by Steele and Sussman [16].

  5. 5.

    Others have used FPGAs to implement distributed memory multicomputers as arrays of soft processors [27, 28].

  6. 6.

    Think of the so-called “8-puzzle” and its sliding plastic tiles.

References

  1. Ackley, D.H., Cannon, D.C., Williams, L.R.: A movable architecture for robust spatial computing. Comput. J. 56(12), 1450–1468 (2013)

    Article  Google Scholar 

  2. Ackley, D.H., Ackley, E.S.: The ulam programming language for artificial life. Artif. Life 22, 431–450 (2016)

    Article  Google Scholar 

  3. Adami, C., Titus Brown, C., Kellogg, W.K.: Evolutionary learning in the 2D artificial life system “Avida”. In: Artificial Life IV, pp. 377–381. MIT Press (1994)

    Google Scholar 

  4. Agha, G.: An overview of actor languages. ACM SIGPLAN Not. 21(10), 58–67 (1986)

    Article  Google Scholar 

  5. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the Spring Joint Computer Conference, pp. 483–485 (1967)

    Google Scholar 

  6. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf (2007)

    Google Scholar 

  7. Baker, H.: Actor Systems for Real-Time Computation. Ph.D. thesis. MIT, January 1978

    Google Scholar 

  8. Berman, P., Simon, J.: Investigations of fault-tolerant networks of computers. In: Proceedings of STOC, pp. 66–77 (1988)

    Google Scholar 

  9. Bezerra, E., Lettnin, D.V.: Synthesizable VHDL Design for FPGAs. Springer, Cham (2013)

    Google Scholar 

  10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)

    Article  MathSciNet  Google Scholar 

  11. Clinger, W.: Foundations of Actor Semantics. Ph.D. thesis. MIT (1981)

    Google Scholar 

  12. Denning, P.J., Lewis, T.G.: Exponential laws of computing growth. Commun. ACM 60(1), 54–65 (2017)

    Article  Google Scholar 

  13. Dybvig, R.K.: Three Implementation Models for Scheme. Ph.D. thesis, University of North Carolina (1987)

    Google Scholar 

  14. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. C–21(9), 948–960 (1972)

    Article  Google Scholar 

  15. Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    MATH  Google Scholar 

  16. Steele Jr, G.L., Sussman, G.J.: Design of a LISP-based microprocessor. Commun. ACM 23(11), 628–645 (1980)

    Article  Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6(4), 308–320 (1964)

    Article  Google Scholar 

  19. Langton, C.G.: Self-reproduction in cellular automata. Phys. D Nonlinear Phenom. 10(1), 135–144 (1984)

    Article  MathSciNet  Google Scholar 

  20. Lewis, T.G., Payne, W.H.: Generalized feedback shift register pseudorandom number algorithm. J. ACM 20(3), 456–468 (1973)

    Article  Google Scholar 

  21. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  22. Pedroni, V.A.: Circuit Design with VHDL. MIT Press, Cambridge (2004)

    Google Scholar 

  23. Ray, T.S.: An evolutionary approach to synthetic biology, Zen and the art of creating life. Artif. Life 1, 179–209 (1994)

    Article  Google Scholar 

  24. Singh, M., Ranjan, S.M., Ali, Z.: A study of different oscillator structures. Int. J. Innovative Res. Sci. Eng. Technol. 3(5), 12724–12734 (2014)

    Google Scholar 

  25. Spector, L., Robinson, A.: Genetic programming and auto-constructive evolution with the Push programming language. Genet. Programm. Evol. Mach. 3(1), 7–40 (2002)

    Article  Google Scholar 

  26. Sussman, G.J., Steele Jr., G.L.: Scheme: an interpreter for extended lambda calculus. High.-Order Symb. Comput. 11(4), 405–439 (1998)

    Article  Google Scholar 

  27. Vanderbauwhede, W., Benkrid, K.: High-Performance Computing Using FPGAs. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-1791-0

    Book  Google Scholar 

  28. Vassányi, I.: Implementing processor arrays on FPGAs. In: Hartenstein, R.W., Keevallik, A. (eds.) FPL 1998. LNCS, vol. 1482, pp. 446–450. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055278

    Chapter  Google Scholar 

  29. von Neumann, J.: Theory of Self-Replicating Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  30. Williams, L.R.: Robust evaluation of expressions by distributed virtual machines. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 222–233. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32894-7_21

    Chapter  Google Scholar 

  31. Williams, L.R.: Self-replicating distributed virtual machines. In: 14th International Conference on the Synthesis and Simulation of Living Systems (ALIFE 2014), New York, NY (2014)

    Google Scholar 

  32. Xilinx: 7 Series FPGAs Data Sheet: Overview, August 2017

    Google Scholar 

  33. Zuhdy, B., Fritzson, P., Engström, K.: Implementation of the real-time functional language Erlang on a massively parallel platform, with applications to telecommunications services. In: Hertzberger, B., Serazzi, G. (eds.) HPCN-Europe 1995. LNCS, vol. 919, pp. 886–891. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0046731

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance R. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jensen, L.A., Williams, L.R. (2018). An FPGA Implementation of a Distributed Virtual Machine. In: Stepney, S., Verlan, S. (eds) Unconventional Computation and Natural Computation. UCNC 2018. Lecture Notes in Computer Science(), vol 10867. Springer, Cham. https://doi.org/10.1007/978-3-319-92435-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92435-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92434-2

  • Online ISBN: 978-3-319-92435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics