Computational Completeness of Simple Semi-conditional Insertion-Deletion Systems

  • Henning Fernau
  • Lakshmanan Kuppusamy
  • Indhumathi Raman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)


Insertion-deletion (or ins-del for short) systems are well studied in formal language theory, especially regarding their computational completeness. The need for many variants on ins-del systems was raised by the computational completeness result of ins-del system with (optimal) size (1, 1, 1; 1, 1, 1). Several regulations like graph-control, matrix and semi-conditional have been imposed on ins-del systems. Typically, computational completeness are obtained as trade-off results, reducing the size, say, to (1, 1, 0, 1, 1, 0) at the expense of increasing other measures of descriptional complexity. In this paper, we study simple semi-conditional ins-del systems, where an ins-del rule can be applied only in the presence or absence of substrings of the derivation string. We show that simple semi-conditional ins-del system, with maximum permitting string length 2 and maximum forbidden string length 1 and sizes (2, 0, 0; 2, 0, 0), (1, 1, 0; 2, 0, 0), or (1, 1, 0; 1, 1, 1), are computationally complete. We also describe RE by a simple semi-conditional ins-del system of size (1, 1, 0; 1, 1, 0) and with maximum permitting and forbidden string lengths 3 and 1, respectively. The obtained results complement the existing results available in the literature.


  1. 1.
    Fernau, H., Kuppusamy, L., Raman, I.: Graph-controlled insertion-deletion systems generating language classes beyond linearity. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 128–139. Springer, Cham (2017). Scholar
  2. 2.
    Fernau, H., Kuppusamy, L., Raman, I.: Investigations on the power of matrix insertion-deletion systems with small sizes. Accepted with Natural Computing (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fernau, H., Kuppusamy, L., Raman, I.: On describing the regular closure of the linear languages with graph-controlled insertion-deletion systems. In: RAIRO Informatique théorique et Applications/Theoretical Informatics and Applications (2017, Submitted)Google Scholar
  4. 4.
    Fernau, H., Kuppusamy, L., Raman, I.: On path-controlled insertion-deletion systems. Accepted with Acta Informatica (2017)Google Scholar
  5. 5.
    Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G., (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, vol. 31. EPTCS, pp. 88–98 (2010)CrossRefGoogle Scholar
  6. 6.
    Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. Fundamenta Informaticae 138, 127–144 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Krassovitskiy, A., Rogozhin, Yu., Verlan, S.: Computational power of insertion-deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Krishna, S.N., Rama, R.: Insertion-deletion P systems. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 360–370. Springer, Heidelberg (2002). Scholar
  10. 10.
    Kuppusamy, L., Rama, R.: On the power of tissue P systems with insertion and deletion rules. In: Pre-Proceedings of Workshop on Membrane Computing, vol. 28. Report RGML, pp. 304–318. University of Tarragona, Spain (2003)Google Scholar
  11. 11.
    Meduna, A., Svec, M.: Grammars with Context Conditions and Their Applications. Wiley-Interscience, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998). Scholar
  13. 13.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2(4), 321–336 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata Lang. Comb. 12(1–2), 317–328 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J. Moldova 18(2), 210–245 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Henning Fernau
    • 1
    • 2
    • 3
  • Lakshmanan Kuppusamy
    • 1
    • 2
    • 3
  • Indhumathi Raman
    • 1
    • 2
    • 3
  1. 1.Fachbereich 4 – Abteilung Informatikwissenschaften, CIRTUniversität TrierTrierGermany
  2. 2.School of Computer Science and EngineeringVITVelloreIndia
  3. 3.School of Information Technology and EngineeringVITVelloreIndia

Personalised recommendations