Advertisement

Word Blending in Formal Languages: The Brangelina Effect

  • Srujan Kumar Enaganti
  • Lila Kari
  • Timothy Ng
  • Zihao Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)

Abstract

In this paper we define and investigate a binary word operation that formalizes an experimentally observed outcome of DNA computations, performed to generate a small gene library and implemented using a DNA recombination technique called Cross-pairing Polymerase Chain Reaction (XPCR). The word blending between two words \(x w y_1\) and \(y_2 w z\) that share a non-empty overlap w, results in xwz. We study closure properties of families in the Chomsky hierarchy under word blending, language equations involving this operation, and its descriptional state complexity when applied to regular languages. Interestingly, this phenomenon has been observed independently in linguistics, under the name “blend word” or “portmanteau”, and is responsible for the creation of words in the English language such as smog (smoke + fog), labradoodle (labrador + poodle), and Brangelina (Brad + Angelina).

Notes

Acknowledgements

We thank Giuditta Franco for fruitful discussions on modelling the outcomes of various XPCR experiments.

References

  1. 1.
    Bonizzoni, P., Ferretti, C., Mauri, G., Zizza, R.: Separating some splicing models. Inf. Process. Lett. 79(6), 255–259 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonizzoni, P., Felice, C.D., Zizza, R.: The structure of reflexive regular splicing languages via Schützenberger constants. Theor. Comput. Sci. 334(1), 71–98 (2005)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J., Kari, L., Li, B., Szykuła, M.: State complexity of overlap assembly. arXiv preprint arXiv:1710.06000 (2017)
  4. 4.
    Carausu, A., Păun, Gh.: String intersection and short concatenation. Revue Roumaine de Mathématiques Pures et Appliquées 26(5), 713–726 (1981)Google Scholar
  5. 5.
    Csuhaj-Varju, E., Petre, I., Vaszil, Gy.: Self-assembly of strings and languages. Theor. Comput. Sci. 374(1), 74–81 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Domaratzki, M.: Minimality in template-guided recombination. Inf. Comput. 207(11), 1209–1220 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: On the overlap assembly of strings and languages. Nat. Comput. 16(1), 175–185 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA overlap assembly. Inf. Comput. 253, 143–154 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Franco, G.: A polymerase based algorithm for SAT. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 237–250. Springer, Heidelberg (2005).  https://doi.org/10.1007/11560586_20CrossRefGoogle Scholar
  10. 10.
    Franco, G., Bellamoli, F., Lampis, S.: Experimental analysis of XPCR-based protocols. arXiv preprint arXiv:1712.05182 (2017)
  11. 11.
    Franco, G., Giagulli, C., Laudanna, C., Manca, V.: DNA extraction by XPCR. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 104–112. Springer, Heidelberg (2005).  https://doi.org/10.1007/11493785_9CrossRefMATHGoogle Scholar
  12. 12.
    Franco, G., Manca, V.: Algorithmic applications of XPCR. Nat. Comput. 10(2), 805–819 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Franco, G., Manca, V., Giagulli, C., Laudanna, C.: DNA recombination by XPCR. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 55–66. Springer, Heidelberg (2006).  https://doi.org/10.1007/11753681_5CrossRefMATHGoogle Scholar
  14. 14.
    Golan, J.S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Addison-Wesley Longman Ltd., Reading (1992)MATHGoogle Scholar
  15. 15.
    Goode, E., Pixton, D.: Recognizing splicing languages: syntactic monoids and simultaneous pumping. Discrete Appl. Math. 155(8), 989–1006 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gries, S.T.: Shouldn’t it be breakfunch? A quantitative analysis of blend structure in English. Linguistics 42(3), 639–667 (2004)CrossRefGoogle Scholar
  17. 17.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–759 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Holzer, M., Jakobi, S.: Chop operations and expressions: descriptional complexity considerations. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 264–275. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22321-1_23CrossRefGoogle Scholar
  19. 19.
    Holzer, M., Jakobi, S.: State complexity of chop operations on unary and finite languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 169–182. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31623-4_13CrossRefMATHGoogle Scholar
  20. 20.
    Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. In: Automata and Formal Languages, 13th International Conference, AFL 2011, Debrecen, pp. 197–210 (2011)Google Scholar
  21. 21.
    Ito, M., Lischke, G.: Generalized periodicity and primitivity for words. Math. Logic Q. 53(1), 91–106 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kari, L.: On language equations with invertible operations. Theor. Comput. Sci. 132(1–2), 129–150 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Manca, V., Franco, G.: Computing by polymerase chain reaction. Math. Biosci. 211(2), 282–298 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mateescu, A., Păun, Gh., Rozenberg, G., Salomaa, A.: Simple splicing systems. Discrete Appl. Math. 84(1–3), 145–163 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mateescu, A., Salomaa, A.: Handbook of Formal Languages. Springer, New York (1997)Google Scholar
  26. 26.
    Pixton, D.: Splicing in abstract families of languages. Theor. Comput. Sci. 234, 135–166 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Păun, Gh.: On the splicing operation. Discrete Appl. Math. 70(1), 57–79 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Salomaa, A.: Formal Languages. Academic Press Inc., New York (1977)MATHGoogle Scholar
  29. 29.
    Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. Int. J. Found. Comput. Sci. 18(4), 683–698 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Srujan Kumar Enaganti
    • 1
  • Lila Kari
    • 2
  • Timothy Ng
    • 2
  • Zihao Wang
    • 1
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations