Advertisement

Mechanical Sequential Counting with Liquid Marbles

  • Thomas C. Draper
  • Claire Fullarton
  • Neil Phillips
  • Ben P. J. de Lacy Costello
  • Andrew Adamatzky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)

Abstract

Here we demonstrate the first working example of a liquid marble-operated sequential binary counting device. We have designed a lightweight gate that can be actuated by the low mass and momentum of a liquid marble. By linking a number of these gates in series, we are able to digitally count up to binary 1111 (upper limit only by our requirements). Using liquid marbles in such a system opens up new avenues of research and design, by way of modifying the coating and/or core of the liquid marbles, and thereby giving extra dimensions for calculation (e.g. a calculation that takes into consideration the progress of a chemical reaction inside a liquid marble). In addition, the new gate design has multiple uses in liquid marble rerouting.

Keywords

Liquid marbles Unconventional computing Binary counter Logic gate Particle-coated droplets Mechanical computing 

Notes

Acknowledgements

This research was supported by the EPSRC with grant EP/P016677/1 ‘Computing with Liquid Marbles’.

References

  1. 1.
    Asare-Asher, S., Connor, J.N., Sedev, R.: Elasticity of liquid marbles. J. Colloid Interface Sci. 449, 341–346 (2015).  https://doi.org/10.1016/j.jcis.2015.01.067CrossRefGoogle Scholar
  2. 2.
    Asbury, W.: US Patent 957,135 (1909)Google Scholar
  3. 3.
    Aussillous, P., Quéré, D.: Liquid marbles. Nature 411(6840), 924–927 (2001).  https://doi.org/10.1038/35082026CrossRefzbMATHGoogle Scholar
  4. 4.
    Aussillous, P., Quéré, D.: Properties of liquid marbles. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2067), 973–999 (2006).  https://doi.org/10.1098/rspa.2005.1581CrossRefzbMATHGoogle Scholar
  5. 5.
    Bhosale, P.S., Panchagnula, M.V., Stretz, H.A.: Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl. Phys. Lett. 93(3), 034109 (2008).  https://doi.org/10.1063/1.2959853CrossRefGoogle Scholar
  6. 6.
    Bormashenko, E., Bormashenko, Y.: Non-stick droplet surgery with a superhydrophobic scalpel. Langmuir 27(7), 3266–3270 (2011).  https://doi.org/10.1021/la200258uCrossRefGoogle Scholar
  7. 7.
    Bormashenko, E., Pogreb, R., Balter, R., Aharoni, H., Aurbach, D., Strelnikov, V.: Liquid marbles containing petroleum and their properties. Pet. Sci. 12(2), 340–344 (2015).  https://doi.org/10.1007/s12182-015-0016-yCrossRefGoogle Scholar
  8. 8.
    Chandan, S., Ramakrishna, S., Sunitha, K., Satheesh Chandran, M., Santhosh Kumar, K.S., Mathew, D.: pH-responsive superomniphobic nanoparticles as versatile candidates for encapsulating adhesive liquidmarbles. J. Mater. Chem. A 5(43), 22813–22823 (2017).  https://doi.org/10.1039/C7TA07562FCrossRefGoogle Scholar
  9. 9.
    Draper, T.C., Fullarton, C., Phillips, N., de Lacy Costello, B.P., Adamatzky, A.: Liquid marble interaction gate for collision-based computing. Mater. Today 20(10), 561–568 (2017).  https://doi.org/10.1016/j.mattod.2017.09.004CrossRefGoogle Scholar
  10. 10.
    Fair, R.B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluidics 3(3), 245–281 (2007).  https://doi.org/10.1007/s10404-007-0161-8CrossRefGoogle Scholar
  11. 11.
    Fullarton, C., Draper, T.C., Phillips, N., Mayne, R., de Lacy Costello, B.P.J., Adamatzky, A.: Evaporation, lifetime, and robustness studies of liquid marbles for collision-based computing. Langmuir 34(7), 2573–2580 (2018).  https://doi.org/10.1021/acs.langmuir.7b04196CrossRefGoogle Scholar
  12. 12.
    Godfrey, J.T.: US Patent 3,390,471 (1965)Google Scholar
  13. 13.
    Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., Kielpinski, M., Scriba, J., Wixforth, A.: Planar chip devicefor PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3), 308–317 (2005).  https://doi.org/10.1039/B412712ACrossRefGoogle Scholar
  14. 14.
    Kimball, W.D., Braren, C.I., Schaefer, G.P.: US Patent 2,052,513 (1930)Google Scholar
  15. 15.
    Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 107–134. Springer, London (2002).  https://doi.org/10.1007/978-1-4471-0129-1_5CrossRefGoogle Scholar
  16. 16.
    McEvoy, G.N.: US Patent 884,605 (1905)Google Scholar
  17. 17.
    Nguyen, N.T., Hejazian, M., Ooi, C., Kashaninejad, N.: Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8(6), 186 (2017).  https://doi.org/10.3390/mi8060186CrossRefGoogle Scholar
  18. 18.
    Oliveira, N.M., Reis, R.L., Mano, J.F.: The potential of liquid marbles for biomedical applications: a critical review. Adv. Healthc. Mater. 6(19), 1700192 (2017).  https://doi.org/10.1002/adhm.201700192CrossRefGoogle Scholar
  19. 19.
    Ooi, C.H., Nguyen, N.T.: Manipulation of liquid marbles. Microfluid. Nanofluidics 19(3), 483–495 (2015).  https://doi.org/10.1007/s10404-015-1595-zCrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Nguyen, N.T.: Magnetic digital microfluidics a review. Lab Chip 17(6), 994–1008 (2017).  https://doi.org/10.1039/C7LC00025ACrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Park, S., Liu, K., Tsuan, J., Yang, S., Wang, T.H.: A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11(3), 398–406 (2011).  https://doi.org/10.1039/C0LC00296HCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unconventional Computing LaboratoryUniversity of the West of EnglandBristolUK
  2. 2.Institute of Biosensing Technology, Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK

Personalised recommendations