Advertisement

Deterministic Sensing \(5'\rightarrow 3'\) Watson-Crick Automata Without Sensing Parameter

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)

Abstract

Watson-Crick (WK) finite automata are working on double stranded DNA molecule that is also called Watson-Crick tape. Subsequently, these automata have two reading heads, one for each strand. While in traditional WK automata both heads read the whole input in the same physical direction, in \(5'\rightarrow 3'\) WK automata the heads start from the two extremes (say \(5'\) end of the strands) and read the input in opposite direction. In sensing \(5'\rightarrow 3'\) WK automata the process on the input is finished when the heads meet. Since the heads of a WK automaton may read longer strings in a transition, in previous models a so-called sensing parameter took care for the proper meeting of the heads (not allowing to read the same positions of the input in the last step). Recently a new model is investigated, which works without the sensing parameter. In this paper, the deterministic counterpart is studied and proved to be accept the language class 2detLIN, i.e., the same class that is accepted by the deterministic variant of the earlier version. However, using some of restricted variants, e.g., all-final automata, the classes of the accepted languages are changed showing a more finer hierarchy inside the class of linear context-free languages.

Keywords

Deterministic Watson-Crick automata \(5'\rightarrow 3'\) WK automata Finite automata Linear context-free languages Hierarchy Deterministic languages 

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinational problems. Science 226, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Czeizler, E.: A short survey on Watson-Crick automata. Bull. EATCS 88, 104–119 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A.: Watson-Crick finite automata. In: 3rd DIMACS Symposium on DNA Based Computers, Philadelphia, pp. 305–317 (1997)Google Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory: Languages and Computation. Addison-Wesley Publishing Company, Reading (1979)MATHGoogle Scholar
  5. 5.
    Kuske, D., Weigel, P.: The role of the complementarity relation in Watson-Crick automata and sticker systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 272–283. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30550-7_23CrossRefMATHGoogle Scholar
  6. 6.
    Leupold, P., Nagy, B.: \(5^{\prime } \rightarrow 3^{\prime }\) Watson-Crick automata with several runs. Fundamenta Informaticae 104, 71–91 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Nagy, B.: On \({5^{\prime }} \rightarrow {3^{\prime }}\) sensing Watson-Crick finite automata. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 256–262. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77962-9_27CrossRefGoogle Scholar
  8. 8.
    Nagy, B.: On a hierarchy of \(5^{\prime } \rightarrow 3^{\prime }\) sensing WK finite automata languages. In: CiE 2009, Abstract Booklet, pp. 266–275 (2009)Google Scholar
  9. 9.
    Nagy, B.: On a hierarchy of \(5^{\prime } \rightarrow 3^{\prime }\) sensing Watson-Crick finite automata languages. J. Log. Comput. 23(4), 855–872 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nagy, B., Parchami, S., Mir-Mohammad-Sadeghi, H.: A new sensing \(5^{\prime } \rightarrow 3^{\prime }\) Watson-Crick automata concept. In: AFL 2017, EPTCS, vol. 252, pp. 195–204 (2017)Google Scholar
  11. 11.
    Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing – New Computing Paradigms. Texts in Theoretical Computer Science. An EATCS Series, p. IX, 400. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-3-662-03563-4. ISBN 978-3-540-64196-4CrossRefGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A.: The Handbook of Formal Languages: Volume 1 Word, Language, Grammar. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and SciencesEastern Mediterranean UniversityFamagustaTurkey

Personalised recommendations