Algorithmic Design of Cotranscriptionally Folding 2D RNA Origami Structures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)

Abstract

We address a biochemical folding obstacle of “polymerase trapping” that arises in the remarkable RNA origami tile design framework of Geary, Rothemund and Andersen (Science 2014). We present a combinatorial formulation of this obstacle, together with an optimisation procedure that yields designs minimising the risk of encountering the corresponding topological trap in the tile folding phase. The procedure has been embedded in an automated software pipeline, and we provide examples of designs produced by the software, including an optimised version of the RNA smiley-face tile proposed by Geary and Andersen (DNA 2014).

Keywords

RNA origami RNA tiles RNA nanotechnology Rational design Cotranscriptional folding Grid graphs Spanning trees 

Notes

Acknowledgments

We thank Ebbe Andersen and Cody Geary for introducing us to the problem of polymerase trapping in RNA origami tile design, and their encouragement to proceed with the solution approach discussed in this paper.

References

  1. 1.
    Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, P., Oroudjev, E., Hansma, H.G., Jaeger, L.: Building programmable jigsaw puzzles with RNA. Science 306(5704), 2068–2072 (2004).  https://doi.org/10.1126/science.1104686CrossRefGoogle Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)MATHGoogle Scholar
  3. 3.
    Geary, C., Chworos, A., Verzemnieks, E., Voss, N.R., Jaeger, L.: Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett. 17(11), 7095–7101 (2017).  https://doi.org/10.1021/acs.nanolett.7b03842CrossRefGoogle Scholar
  4. 4.
    Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules than fold greedily during transcription. In: Proceedings, 41st International Conference on Mathematical Foundations of Computer Science (MFCS 2016). LIPIcs, vol. 58, pp. 43:1–43:14. Dagstuhl Publishing (2016).  https://doi.org/10.4230/LIPIcs.MFCS.2016.43
  5. 5.
    Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799 (2014).  https://doi.org/10.1126/science.1253920CrossRefGoogle Scholar
  6. 6.
    Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 1–19. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11295-4_1CrossRefGoogle Scholar
  7. 7.
    Guo, P.: The emerging field of RNA nanotechnology. Nat. Nanotech. 5, 833–842 (2010).  https://doi.org/10.1038/nnano.2010.231CrossRefGoogle Scholar
  8. 8.
    Han, D., Qi, W., Myhrvold, C., Wang, B., Dai, M., Jiang, S., Bates, M., Liu, Y., An, B., Zhang, F., Yan, H., Yin, P.: Single-stranded DNA and RNA origami. Science 358(6369), eaao2648 (2017).  https://doi.org/10.1126/science.aao2648CrossRefGoogle Scholar
  9. 9.
    Jasinski, D., Haque, F., Binzel, D.W., Guo, P.: Advancement of the emerging field of RNA nanotechnology. ACS Nano 11(2), 1142–1164 (2017).  https://doi.org/10.1021/acsnano.6b05737CrossRefGoogle Scholar
  10. 10.
    Kohman, R., Kunjapur, A.M., Hysolli, E., Wang, Y., Church, G.M.: From designing the molecules of life to designing life: future applications derived from advances in DNA technologies. Angew. Chem. Int. Ed. 57, 4313–4328 (2018).  https://doi.org/10.1002/anie.201707976CrossRefGoogle Scholar
  11. 11.
    Kreweras, G.: Complexité et circuits eulériens dans les sommes tensorielles de graphes. J. Comb. Theory Ser. B 24(2), 202–212 (1978).  https://doi.org/10.1016/0095-8956(78)90021-7MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li, Y., Mao, C., Deng, Z.: Supramolecular wireframe DNA polyhedra: assembly and applications. Chin. J. Chem. 35(6), 801–810 (2017).  https://doi.org/10.1002/cjoc.201600789CrossRefGoogle Scholar
  13. 13.
    Orponen, P.: Design methods for DNA nanostructures. Nat. Comput. 17(1), 147–160 (2018).  https://doi.org/10.1007/s11047-017-9647-9MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006).  https://doi.org/10.1038/nature04586CrossRefGoogle Scholar
  15. 15.
    Seeman, N.C.: Structural DNA Nanotechnology. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  16. 16.
    Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).  https://doi.org/10.1038/natrevmats.2017.68CrossRefGoogle Scholar
  17. 17.
    Westhof, E., Masquida, B., Jaeger, L.: RNA tectonics: towards RNA design. Fold. Des. 1(4), R78–R88 (1996).  https://doi.org/10.1016/S1359-0278(96)00037-5CrossRefGoogle Scholar
  18. 18.
    Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014).  https://doi.org/10.1021/ja505101aCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdulmelik Mohammed
    • 1
  • Pekka Orponen
    • 1
  • Sachith Pai
    • 1
  1. 1.Department of Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations