Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theor. Relat. Fields 103(2), 199–213 (1995)
MathSciNet
CrossRef
Google Scholar
Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. A.M.S. 36(4), 413–432 (1999)
MathSciNet
CrossRef
Google Scholar
Balogh, J., Bonchiş, C., Diniş, D., Istrate, G., Todincã, I.: Heapability of partial orders. arXiv preprint arXiv:1706.01230 (2017)
Basdevant, A.-L., Gerin, L., Gouéré, J.-B., Singh, A.: From Hammersley’s lines to Hammersley’s trees. Prob. Theory Related Fields 171(1–2), 1–51 (2018). https://doi.org/10.1007/s00440-017-0772-2
MathSciNet
CrossRef
Google Scholar
Basdevant, A.-L., Singh, A.: Almost-sure asymptotic for the number of heaps inside a random sequence. arXiv preprint arXiv:1702.06444 (2017)
Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, vol. 137. Cambridge University Press, Cambridge (2011)
MATH
Google Scholar
Byers, J., Heeringa, B., Mitzenmacher, M., Zervas, G.: Heapable sequences and subseqeuences. In: Proceedings of ANALCO 2011, pp. 33–44. SIAM Press (2011)
Google Scholar
Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)
MathSciNet
CrossRef
Google Scholar
Istrate, G., Bonchiş, C.: Partition into heapable sequences, heap tableaux and a multiset extension of Hammersley’s process. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 261–271. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_22
CrossRef
Google Scholar
Istrate, G., Bonchiş, C.: Heapability, interactive particle systems, partial orders: results and open problems. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 18–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9_2
CrossRef
MATH
Google Scholar
Justicz, J., Scheinerman, E.R., Winkler, P.M.: Random intervals. Am. Math. Mon. 97(10), 881–889 (1990)
MathSciNet
CrossRef
Google Scholar
Liggett, T.: Interacting Particle Systems. Springer, Heidelberg (2005). https://doi.org/10.1007/b138374
CrossRef
MATH
Google Scholar
Moore, C., Lakdawala, P.: Queues, stacks and transcendentality at the transition to chaos. Physica D 135(1–2), 24–40 (2000)
MathSciNet
CrossRef
Google Scholar
Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 257–289. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5_7
CrossRef
Google Scholar
Porfilio, J.: A combinatorial characterization of heapability. Master’s thesis, Williams College, May 2015. https://unbound.williams.edu/theses/islandora/object/studenttheses%3A907. Accessed Dec 2017
Reutenauer, C.: Séries formelles et algebres syntactiques. J. Algebra 66(2), 448–483 (1980)
MathSciNet
CrossRef
Google Scholar
Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Cambridge University Press, Cambridge (2015)
MATH
Google Scholar
Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0
CrossRef
MATH
Google Scholar
Szpankowski, W.: Average Case of Algorithms on Sequences. Wiley, New York (2001)
CrossRef
Google Scholar
Welsh, D.: Complexity: Knots, Colourings and Counting. Cambridge University Press, Cambridge (1994)
MATH
Google Scholar
Xie, H.: Grammatical Complexity and One-Dimensional Dynamical Systems. Directions in Chaos, vol. 6. World Scientific, Singapore (1996)
CrossRef
Google Scholar