Skip to main content

Part of the book series: Progress in Drug Research ((PDR,volume 74))

  • 2367 Accesses

Abstract

Phytochemistry or plant chemistry, a borderline discipline between natural product organic chemistry and plant biochemistry, studies different chemicals including drug principles, food additives, and cosmetics of plant origin. It also deals with the structures, synthesis, regulation, and biological properties of secondary metabolites of plants and other bioactive principles as well as their biological functions in plants, human being, and other organisms. Phytochemistry plays significant role in the identification of therapeutically important plant substances and, in association with herbalism, ethnobotany, ethnopharmacology, metabolomics, and bioinformatics, computational biology, plays important role in discovery of new drugs. Phytochemistry initiated to play a significant role in pharmacognosy in the remote past as medicinal phytochemistry (but not until nineteenth century) when people began to isolate different active principles of medicinal plants such as quinine from Cinchona bark (1820), morphine, and codeine from the latex of the Cannabis, digoxin from Digitalis leaves, atropine from Hyoscyamine, etc. Thus, medicinal phytochemistry emerged, which includes the study of phytochemicals from medicinal plants including the bioactive phytochemicals, phytonutrients, food additives, cosmeceuticals, etc. These chemicals are of secondary metabolic origin of plants, and they protect plants from damages due to biotic and abiotic stresses. Such metabolites also contribute to the plant’s color, aroma, and flavor to assist insect pollination, repel herbivore, or elicit pharmacological or toxicological effects in man and animals. Metabolome and metabolomics include the systematic large-scale study of the small molecules or metabolic products (metabolome) of a biological system. Phytochemicals are non-nutritive but have health curative and disease preventive properties when their dietary intake is significant. They provide health benefits for humans beyond macronutrients and micronutrients. Phytochemicals as antioxidant activity, antimicrobial effect, modulation of detoxification enzymes, stimulation of the immune system, decrease of platelet aggregation, and modulation of hormone metabolism and anticancer property. A large diverse group of phytonutrients are found in vegetables, fruit, whole grain products, legumes and sprouts, nuts and seeds, onion, garlic, cumin, anise, basil, bay leaf, sparsely, cilantro, allspice, condiments, tea, coffee, chocolate, algae, etc. They include allyl sulfides, anthocyanins, β-carotene, β-sitosterol, caffeic acid, capsaicin, carnosol, catechins, chlorogenic acid, coumarins, cryptoxanthin, dietary fiber, 3,3′-diindolylmethane, ellagic acid, epicatechin, essential and fixed oils, ferulic acid, flavonoids (2-phenylchromans), folate, folic acid, hydrolysable tannins punicalagins, indoles, indole-3-carbinol, isoflavones (3-phenylchromans), isothiocyanates, lactones, lignans, limonene, lutein, lycopene, monoterpenes, monounsaturated fat, nasunin, niacin, organosulfures, omega (omega-3, omega-6 fatty acids), oxalic acid, perillyl alcohol, phenols and polyphenols, phytic acid, phytosterols, protease inhibitors, saponins, sesquiterpene, soluble fiber, sulforaphane, quercitin, resins, oleoresins, resveratrol, sulforaphane, tannic acid, thiosulfinates, saponins, silymarin, tartaric acid, vitamins B1, B6, E, K, vitamin C, xanthones, zeaxanthin, etc., as well as elements potassium, copper, manganese, selenium, magnesium, zinc, iodine, iron, chromium, etc. Crude drugs, over-the-counter remedies, ethical phytomedicines (standardized toxicologically and clinically defined crude drugs), etc., are promising low-cost alternative medicines used in primary health care of rural people of developing countries. The field herbal medicine also has benefited greatly in recent years from the interaction of the study of traditional ethnobotanical knowledge and the application of modem phytochemical analysis and biological activity studies to medicinal plants. Phytonutrients, vitamins, and minerals contained in plants had been hinted at for millennia. The field herbal medicine also has benefited greatly in recent years with the use of high-throughput robotic screening technique developed by industry, bioassay-guided fractionation of crude extracts aided by chromatographic separation techniques (LC, GC, TLC, MPLC, HPLC), chemical structure elucidation by spectroscopic (HPLC/MS, NMR, DIMS, FTMS), immunoassay, etc. Medicinal phytochemistry is receiving ever greater attention in research, pharmaceutical industry as well as in trade and economy. The estimated value of plant-based crude drugs in world trade is nearly US$45,000 million per year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerknecht EH (1973) Therapeutics: from the primitives to the 20th century. Hafner Press, NY

    Google Scholar 

  • Agarwal S, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. CMAJ 163(6):739–744

    PubMed  PubMed Central  CAS  Google Scholar 

  • Akande KE, Doma UD, Agu HO, Adamu HM (2010) Major antinutrients found in plant protein sources: their effect on nutrition. Pak J Nutr 9:827–832

    Article  CAS  Google Scholar 

  • Anonymous (2000) Report of the task force on conservation and sustainable use of medicinal plants. Planning Commission, New Delhi

    Google Scholar 

  • Aregheore EM, Agunbiade OO (1991) The toxic effects of cassava (Manihot esculenta grantz) diets on humans: a review. Vet Hum Toxicol 33:274–275

    PubMed  CAS  Google Scholar 

  • Armstrong JW (1999) A review of high-throughput screening approaches for drug discovery. Am Biotechnol Lab 17:26–28

    CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425

    Article  CAS  PubMed  Google Scholar 

  • Canene-Adams K, Lindshield B, Wang S, Jeffery E, Clinton S, Erdman J (2007) Combinations of tomato and broccoli enhance antitumor activity in dunning R3327-H prostate adenocarcinomas. Cancer Res 67(2):836–843

    Article  CAS  PubMed  Google Scholar 

  • Clark RL, Johnston BF, Mackay SP, Breslin CJ, Robertson M, Harley AL (2010) The drug discovery portal: a resource to enhance drug discovery from Akademia. Drug Discov Today 15:679–683

    Article  PubMed  Google Scholar 

  • Costa MA, Zia ZQ, Davin LB, Lewis NG (1999) Toward engineering the metabolic pathways of cancer-preventing lignans in cereal grains and other crops. In: Romeo JT (ed) Recent advances in phytochemistry, vol 33. Phytochemicals in Human Health Protection, Nutrition, and Plant Defense, New York, pp 67–87

    Chapter  Google Scholar 

  • Cragg GM, Katz F, Newman DJ, Rosenthal J (2012) The impact of the United Nations convention on biological diversity on natural products research. Nat Prod Rep 29:1407–1423

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochem Biophys Acta 1830(6):3670–3695

    Article  CAS  Google Scholar 

  • Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF (2004) Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. J Nutr Cancer 50(2):161–167

    Article  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, Baffins Lane

    Google Scholar 

  • Dudley E, Yousef M, Wang Y, Griffiths W (2010) Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol 80:45–83

    Article  CAS  PubMed  Google Scholar 

  • Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–1266

    Article  CAS  Google Scholar 

  • Fadeyi SA, Fadeyi OO, Adejumo AA, Okoro C, Myles EL (2013) In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med. https://doi.org/10.1186/1472-6882-13-79

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes T, Diogo MM, Clark DS, Dordick JS, Cabral J (2009) High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FSANZ (2004) Cyanogenic glycosides in cassava and bamboo shoots: A human health risk assessment. Technical report series no. 28, Food Standards Australia New Zealand (FSANZ)

    Google Scholar 

  • Fukusaki E, Kobayashi A (2005) Plant metabolomics: potential for practical operation. J Biosci Bioeng 100:347–354

    Article  CAS  PubMed  Google Scholar 

  • Gahlaut A, Vikas DM, Gothwal A, Kulharia M, Chhillar AK, Hooda V et al (2013) Proteomics and metabolomics: mapping biochemical regulations. Drug Invent Today 5:321–326

    Article  CAS  Google Scholar 

  • George F, Zohar K, Harinder PS, Makkar Klaus B (2002) The biological action of saponins in animal systems: a review. British J Nutrition 88:587–605

    Article  CAS  Google Scholar 

  • Gibson EL, Wardel J, Watts CJ (1998) Fruit and vegetable consumption, nutritional knowledge and beliefs in mothers and children. Appetite 31:205–228

    Article  CAS  PubMed  Google Scholar 

  • Golmohamadi A, Möller G, Powers J, Nindo C (2013) Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason Sonochem 20(5):1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer Agents from natural products. Taylor and Francis Group, Boca Raton, Florida, pp 123–136

    Google Scholar 

  • Hann M, Opera TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (2007) Natural products as screening resource. Curr Opin Chem Biol 11:480–484

    Article  CAS  PubMed  Google Scholar 

  • Hasler CM, Blumberg JB (1999) Symposium on phytochemicals: biochemistry and physiology. J Nutr 129:756S–757S

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BE, Klaus JR, Lllabre MM, Gonzalez A, Lawrence PJ, Maher KJ et al (2007) Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: a randomized controlled trial. Arch Intern Med 167(2):148–154

    Article  CAS  PubMed  Google Scholar 

  • Inglese J, Auld DS (2009) Application of high throughput screening (HTS) techniques: applications in chemical biology in Wiley Encyclopedia of chemical biology, vol 2. Wiley, Hoboken, NJ, pp 260–274

    Google Scholar 

  • Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M et al (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52(3):520–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Kate KT, Laird SA (1999) The commercial use of biodiversity: access to genetic resources and benefit-sharing. Earthscan, London, UK. books.google.com

  • King A, Young G (1999) Characteristics and occurrence of phenolic phytochemicals. J Am Dietetic Association 24:213–218

    Article  Google Scholar 

  • Kinghorn AD, Pan L, Fletcher JN, Chai H (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK et al (1984) Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J Nat Prod 47:715–717

    Article  CAS  PubMed  Google Scholar 

  • Lee BK, Kim JH, Jung JW, Choi JW, Han ES et al (2005) Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Lett 157:49–56

    Article  CAS  PubMed  Google Scholar 

  • Letavayova L, Vichova V, Brozmanova J (2006) Selenium: from cancer prevention to DNA damage. J Toxicology 227(1–2):1–14

    CAS  Google Scholar 

  • Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  CAS  PubMed  Google Scholar 

  • Mahdi JG (2010) Medicinal potential of willow: a chemical perspective of aspirin discovery. J Saudi Chem Soc 14:317–322

    Article  CAS  Google Scholar 

  • Marles RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2:137–189

    Article  CAS  PubMed  Google Scholar 

  • Mashkovsky MD, Kruglikova-Lvova RP (1951) On the pharmacology of the new alkaloid galantamine. Farmacol Toxicol (Mosk) 14:27–30 (in Russian)

    Google Scholar 

  • Mathai K (2000) Nutrition in the adult years. In: Mahan LK, Escott-Stump S (ed) Krause’s food, nutrition, and diet therapy, 10th edn. pp 271, 274–275

    Google Scholar 

  • McGuire K, Ngoubilly N, Neavyn M, Lanza-Jacoby S (2006) Diindolylmethane and Paclitaxel Act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. J Surgical Res 132(2):208–213

    Article  CAS  Google Scholar 

  • Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y (2017) Bioactive compounds from medicinal plants: focus on Piper species Review. South African J Bot. 112:54–69

    Article  CAS  Google Scholar 

  • Miralpeix B, Rischer H, Hakkinen ST, Ritala A, Seppanen-Laakso T, Oksman-Caldentey KM et al (2013) Metabolic engineering of plant secondary products: which way forward? Curr Pharm Des 19:5622–5639

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Harwansh RK, Bahadur S, Biswas S, Kuchibhatla LN, Tetali SD et al (2016) Metabolomics of medicinal plants—a versatile tool for standardization of herbal products and quality evaluation of ayurvedic formulations—review article. Current Sci. 111(10):1624–1630

    Article  CAS  Google Scholar 

  • Negi JS, Singh P, Rawat B (2011) Chemical constituents and biological importance of Swertia: a review. Curr Res Chem 3:1–15

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul CC, Chiedozie OI, Ferdinand NM (2015) Bioactive principles from medicinal plants. Res J Phytochem 9:88–115

    Article  CAS  Google Scholar 

  • Pitchai D, Manikkam R, Rajendran SR, Pitchai G (2010) Database on pharmacophore analysis of active principles, from medicinal plants. Bioinformation 5:43–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi M, Farhadi R, Balashahri MS, Raeisi AS (2012) Applications of new technologies in medicinal plant. Int J Agron Plant Prod 3:128–131

    Google Scholar 

  • Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (Ed) Herbal drugs: ethnomedicine to modern medicine. Springer, New York, ISBN: 978-3-540-79116-4, pp 7–32

    Google Scholar 

  • Rao SLN, Adiga PR, Sarma PS (1964) The isolation and characterization of β-N-oxalyl-l-α, β-diaminopropionic acid: a neurotoxin from the seeds of Lathyrus satuivus. Biochemistry 47:432–436

    Article  Google Scholar 

  • Rao AV, Ray MR, Rao LG (2006) Lycopene. Adv Food Nutr Res 51:99–164

    Article  CAS  PubMed  Google Scholar 

  • Ray AL, Semba RD, Walston J, Ferrucci L, Cappola AR, Ricks MO et al (2006) Low serum selenium and total carotenoids predict mortality among older women living in the community. J Nutrition 136(1):172–176

    Article  CAS  Google Scholar 

  • Saito K (2013) Phytochemical genomics—a new trend. Curr Opin Plant Biol 16:373–380

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan S, Chen Y, Saravaran D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10

    PubMed  CAS  Google Scholar 

  • Schep LJ, Schmierer DM, Fountain JS (2006) Veratrum poisoning. Toxicol Rev 25:73–78

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. J Am Med Assoc 272(18):1413–1420

    Article  CAS  Google Scholar 

  • Srivastava R, Kulshreshtha D (1989) Bioactive polysaccharides from plants. Phytochemistry 28(11):2877–2883

    Article  CAS  Google Scholar 

  • Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A et al (2014) Natural products—learning chemistry from plants. Biotechnol J 9:326–336

    Article  CAS  PubMed  Google Scholar 

  • Sumner J (2000) The natural history of medicinal plants. Timber Press, Portland, Oregon

    Google Scholar 

  • Tadele Y (2015) Important anti-nutritional substances and inherent toxicants of feeds. Food Sci Qual Manage 36:40–47

    Google Scholar 

  • Takechi M, Matsunami S, Nishizawa J, Uno C, Tanaka Y (1999) Haemolytic and antifungal activities of saponins or anti-ATPase and antiviral activities of cardiac glycosides. Planta Med 65:585–586

    Article  CAS  PubMed  Google Scholar 

  • Tasheva K, Kosturkova G (2013) Role of biotechnology for protection of endangered medicinal plants. In: Petre M (ed) Environmental biotechnology—new approaches and prospective applications. InTech Publisher, pp 235–285

    Google Scholar 

  • Traore F, Faure R, Ollivier E, Gasquet M, Azas N, Debrauwer L et al (2000) Structure and antiprotozoal activity of triterpenoid saponins from Glinus oppositifolius. Planta Med 66:368–371

    Article  CAS  PubMed  Google Scholar 

  • Trethewey R (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    Article  CAS  PubMed  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J Bacteriol 180:5109–5116

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H (2007) Application of the ‘omic’ technologies in phytomedicine. Phytomedicine 14:70–82

    Article  CAS  PubMed  Google Scholar 

  • WHO (2001) Guidelines on the use of Insecticide-treated mosquito net for the prevention of malaria in Africa. CTD/MAL/AFR/97.4, World Health Organization (WHO), Geneva, Switzerland

    Google Scholar 

  • Williamson EM (2001) Synergy and other interactions in phytomedicines. Phytomedicine 8:401–409

    Article  CAS  PubMed  Google Scholar 

  • Wolfender JL, Rudaz S, Choi YH, Kim HK (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem 20:1056–1090

    PubMed  CAS  Google Scholar 

  • Yoshizawa K, Willett WC, Morris SJ, Stampfer MJ, Spiegelman D, Rimm EB et al (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 90(16):1219–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. M. Alamgir .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alamgir, A.N.M. (2018). Introduction. In: Therapeutic Use of Medicinal Plants and their Extracts: Volume 2. Progress in Drug Research, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-92387-1_1

Download citation

Publish with us

Policies and ethics