Dependable Wireless Communication and Localization in the Internet of Things

  • Bernhard Großwindhager
  • Michael Rath
  • Mustafa S. Bakr
  • Philipp Greiner
  • Carlo Alberto Boano
  • Klaus Witrisal
  • Fabrizio Gentili
  • Jasmin Grosinger
  • Wolfgang Bösch
  • Kay RömerEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 164)


Wireless technologies suffer from physical and man-made impairments (e.g., multipath propagation and interference from competing transmissions, as well as from the effect of temperature variations and other environmental properties): this impairs the reliability, timeliness, and availability of IoT systems. At the same time, we see a wave of new safety-critical IoT applications that require performance guarantees. This chapter surveys methods to increase the dependability of the IoT, specifically focusing, first, on increasing the frequency bandwidth from narrowband, over wideband, towards ultra-wideband to better handle multipath effects and interference. Second, the chapter focuses on increasing the adaptability such that a networked system can compensate disturbances also dynamically, eventually striving for cognitive abilities. A distinguishing feature of this chapter is its comprehensive treatment of dependability issues across multiple layers, from signal processing, over microwave engineering, and to networking.



This work was performed within the LEAD-Project “Dependable Internet of Things in Adverse Environments” funded by Graz University of Technology, Austria, and partly within the “Kalium Home Monitoring” project funded by the Austrian Research Promotion Agency (FFG), Austria.


  1. 1.
    Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  2. 2.
    Boano, C.A., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Dependability for the internet of things—from dependable networking in harsh environments to a holistic view on dependability. e&i Elektrotechnik und Informationstechnik 133(7) (2016)Google Scholar
  3. 3.
    You, C.-W., Wei, C.-C., Chen, Y.-L., Chu, H.-H., Chen, M.-S.: Using mobile phones to monitor shopping time at physical stores. IEEE Pervasive Comput. 10(2), 37–43 (2011)CrossRefGoogle Scholar
  4. 4.
    Martella, C., Miraglia, A., Cattani, M., van Steen, M.: Leveraging proximity sensing to mine the behavior of museum visitors. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom) (2016)Google Scholar
  5. 5.
    Langendoen, K.: Medium access control in wireless sensor networks, vol. 2, pp. 535–560 (2008)Google Scholar
  6. 6.
    Molisch, A., Wireless Communications. Wiley (2011)Google Scholar
  7. 7.
    Rappaport, T.S., Wireless Communications: Principles and Practice. Prentice Hall (2001)Google Scholar
  8. 8.
    Parsons, J.D.: The Mobile Radio Propagation Channel. Wiley (2000)Google Scholar
  9. 9.
    Gallager, R.G.: Stochastic Processes: Theory for Applications. Cambridge University Press (2013)Google Scholar
  10. 10.
    Molisch, A.F.: Ultra-wide-band propagation channels. Proc. IEEE 97(2), 353–371 (2009)CrossRefGoogle Scholar
  11. 11.
    Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)CrossRefGoogle Scholar
  12. 12.
    Proakis, J.G., Salehi, M., Zhou, N., Li, X.: Communication Systems Engineering, vol. 94. Prentice Hall, New Jersey (1994)Google Scholar
  13. 13.
    Barry, J.R., Lee, E.A., Messerschmitt, D.G.: Digital Communication. Springer Science & Business Media (2004)Google Scholar
  14. 14.
    Simon, M.K., Alouini, M.-S.: Digital Communication Over Fading Channels, vol. 95. Wiley (2005)Google Scholar
  15. 15.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  16. 16.
    Cheun, K.: Performance of direct-sequence spread-spectrum rake receivers with random spreading sequences. IEEE Trans. Commun. 45(9), 1130–1143 (1997)CrossRefGoogle Scholar
  17. 17.
    Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House, Inc. (2000)Google Scholar
  18. 18.
    Gast, M.: 802.11 Wireless Networks: The Definitive Guide. O’Reilly Media, Inc. (2005)Google Scholar
  19. 19.
    Dahlman, E., Parkvall, S., Skold, J.: 4G: LTE/LTE-Advanced for Mobile Broadband. Academic Press (2013)Google Scholar
  20. 20.
    Bohge, M., et al.: Dynamic resource allocation in ofdm systems: an overview of cross-layer optimization principles and techniques. IEEE Netw. 21(1), 53–59 (2007)CrossRefGoogle Scholar
  21. 21.
    Hanzo, L.L., et al.: MIMO-OFDM for LTE, WiFi and WiMAX: Coherent Versus Non-coherent and Cooperative Turbo Transceivers, vol. 9. Wiley (2010)Google Scholar
  22. 22.
    Malik, W.Q., Allen, B., Edwards, D.J.: Bandwidth-dependent modelling of smallscale fade depth in wireless channels. IET Microwaves Antennas Propag. 2(6), 519–528 (2008)CrossRefGoogle Scholar
  23. 23.
    Romme, J., Kull, B.: On the relation between bandwidth and robustness of indoor UWB communication. In: 2003 IEEE Conference on Ultra Wideband Systems and Technologies (2003)Google Scholar
  24. 24.
    Scholtz, R.: Multiple access with time-hopping impulse modulation. In: 1993 Military Communications Conference, MILCOM ’93, Conference Record Communication on the Move. IEEE (1993)Google Scholar
  25. 25.
    Win, M.Z., Scholtz, R.A.: Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun. 48(4), 679–689 (2000)CrossRefGoogle Scholar
  26. 26.
    Rushforth, C.: Transmitted-reference techniques for random or unknown channels. IEEE Trans. Inf. Theory 10(1), 39–42 (1964)CrossRefGoogle Scholar
  27. 27.
    Witrisal, K., Leus, G., Janssen, G.J., Pausini, M., Trösch, F., Zasowski, T., Romme, J.: Noncoherent ultra-wideband systems,. IEEE Signal Proc. Mag. 26(4) (2009)CrossRefGoogle Scholar
  28. 28.
    Chen, Y., Wang, B., Han, Y., Lai, H.Q., Safar, Z., Liu, K.J.R.: Why time reversal for future 5G wireless? [perspectives]. IEEE Signal Proc. Mag. 33(2), 17–26 (2016)CrossRefGoogle Scholar
  29. 29.
    Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)CrossRefGoogle Scholar
  30. 30.
    Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)CrossRefGoogle Scholar
  31. 31.
    Haykin, S.: Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio. Cambridge University Press (2012)Google Scholar
  32. 32.
    Mok, E., Retscher, G.: Location determination using WiFi fingerprinting versus WiFi trilateration. J. Locat. Based Serv. 1(2), 145–159 (2007)CrossRefGoogle Scholar
  33. 33.
    Meissner, P.: Multipath-Assisted Indoor Positioning. Ph.D. Dissertation, Graz University of Technology (2014)Google Scholar
  34. 34.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)CrossRefGoogle Scholar
  35. 35.
    Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Springer Handbook of Robotics. Springer, pp. 871–889 (2008)Google Scholar
  36. 36.
    Leitinger, E., Meissner, P., Lafer, M., Witrisal, K.: Simultaneous localization and mapping using multipath channel information. In: Proceedings of the IEEE ICC-15 (2015)Google Scholar
  37. 37.
    Leitinger, E.: Cognitive indoor positioning and tracking using multipath channel information. Ph.D. Dissertation, Graz University of Technology (2016)Google Scholar
  38. 38.
    Kay, S.M.: Fundamentals of Statistical Signal Processing, Estimation Theory, vol. I, Prentice Hall (1993)Google Scholar
  39. 39.
    Witrisal, K., Leitinger, E., Hinteregger, S., Meissner, P.: Bandwidth scaling and diversity gain for ranging and positioning in dense multipath channels. IEEE Wirel. Commun. Lett. PP(99), 1–1 (2016)Google Scholar
  40. 40.
    Witrisal, K., et al.: High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Proc. Mag. 33(2), 59–70 (2016)CrossRefGoogle Scholar
  41. 41.
    Rath, M., et al.: Multipath-assisted indoor positioning enabled by directional UWB sector antennas. In: IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC (2017)Google Scholar
  42. 42.
    Cruz, P., Carvalho, N.B., Remley, K.A.: Designing and testing software-defined radios. IEEE Microw. Mag. 11(4), 83–94 (2010)CrossRefGoogle Scholar
  43. 43.
    Pozar, D.: Microwave and RF Wireless Systems. Wiley, New York (2001)Google Scholar
  44. 44.
    Balasubramanian, S., Boumaiza, S., Sarbishaei, H., Quach, T., Orlando, P., et al.: Ultimate transmission. IEEE Microwav. Mag. 13(1), 64–82 (2012)CrossRefGoogle Scholar
  45. 45.
    Prata, A., Oliveira, A.S.R., Carvalho, N.B.: An agile digital radio system for UHF white spaces. IEEE Microwav. Mag. 15(1), 92–97 (2014)CrossRefGoogle Scholar
  46. 46.
    Kitsunezuka, M., Kunihiro, K., Fukaishi, M.: Efficient use of the spectrum. IEEE Microw. Mag. 13(1), 55–63 (2012)CrossRefGoogle Scholar
  47. 47.
    Gómez-García, R., et al.: Filling the spectral holes: novel/future wireless communications and radar receiver architectures. IEEE Microw. Mag. 15(2), 45–56 (2014)CrossRefGoogle Scholar
  48. 48.
    Kloc, M., et al.: Let’s make them cognitive: cognitive radio technology applied to professional wireless microphone systems. IEEE Microw. Mag. 17, 70–78 (2016)CrossRefGoogle Scholar
  49. 49.
    Baylis, C., Fellows, M., Cohen, L., II, R.J.M.: Solving the spectrum crisis: intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar. IEEE Microw. Mag. 15(5), 94–107 (2014)CrossRefGoogle Scholar
  50. 50.
    Maurer, L., Stuhlberger, R., Wicpalek, C., Haberpeuntner, G., Hueber, G.: Be flexible. IEEE Microw. Mag. 9(2), 83–95 (2008)CrossRefGoogle Scholar
  51. 51.
    Rofougaran, A.R., Rofougaran, M., Behzad, A.: Radios for next-generation wireless networks. IEEE Microw. Mag. 6(1), 38–43 (2005)CrossRefGoogle Scholar
  52. 52.
    Chastellain, F., Botteron, C., Farine, P.A.: Looking inside modern receivers. IEEE Microw. Mag. 12(2), 87–98 (2011)CrossRefGoogle Scholar
  53. 53.
    Wang, H., Dang, V., Liu, Q., Ren, L., Ren, L., et al.: An elegant solution: an alternative ultra-wideband transceiver based on stepped-frequency continuous-wave operation and compressive sensing. IEEE Microw. Mag. 17(7), 53–63 (2016)CrossRefGoogle Scholar
  54. 54.
    Nader, C.: et al. Wideband radio frequency measurements: from instrumentation to sampling theory. IEEE Microw. Mag. 14(2), 85–98 (2013)CrossRefGoogle Scholar
  55. 55.
    Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Personal Commun. 6(4), 13–18 (1999)CrossRefGoogle Scholar
  56. 56.
    Levy, R., Cohn, S.: A history of microwave filter research, design and development. IEEE Trans. Microw. Theory Tech. 32(9), 1055–1067 (1984)CrossRefGoogle Scholar
  57. 57.
    Hunter, I.C., Billonet, L., Jarry, B., Guillon, P.: Microwave filters—applications and technology. IEEE Trans. Microw. Theory Tech. 50(3), 794–805 (2002)CrossRefGoogle Scholar
  58. 58.
    Levy, R., Snyder, R., Matthaei, G.: Design of microwave filters. IEEE Trans. Microw. Theory Tech. 50(3), 783–793 (2002)CrossRefGoogle Scholar
  59. 59.
    Snyder, R.: Practical aspects of microwave filter development. IEEE Microw. Mag. 8(2), 42–54 (2007)CrossRefGoogle Scholar
  60. 60.
    Hong, J.-S.: Microstrip Filters for RF/Microwave Applications. Wiley (2011)Google Scholar
  61. 61.
    Bianchi, G., Sorrentino, R.: Electronic Filter Design and Simulation. McGraw-Hill (2007)Google Scholar
  62. 62.
    Matthaei, G., Jones, E., Young, L.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech Microwave Library, North Bergen, NJ (1964)Google Scholar
  63. 63.
    Cameron, R., Kudsia, C., Mansour, R.R.: Microwave filters for communication systems. Wiley-Interscience, Hoboken, N.J. (2007)Google Scholar
  64. 64.
    Tazzoli, A., Peretti, V., Gaddi, R.: et al. Reliability issues in rf-mems switches submitted to cycling and esd test. In: 2006 IEEE International Reliability Physics Symposium Proceedings (2006)Google Scholar
  65. 65.
    Wong, P.W., Hunter, I.C.: Electronically reconfigurable microwave bandpass filter. IEEE Trans. Microw. Theory Tech. 57(12), 3070–3079 (2009)Google Scholar
  66. 66.
    Wu, Z., Shim, Y., Rais-Zadeh, M.: Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology. IEEE Trans. Microw. Theory Tech. 60(3), 518–527 (2012)CrossRefGoogle Scholar
  67. 67.
    Pelliccia, L.: et al.: Compact ultra-wideband planar filter with RF-MEMS-based tunable notched band. In: 2012 Asia Pacific Microwave Conference Proceedings (2012)Google Scholar
  68. 68.
    Kraus, J.D., Marhefka, R.J.: Antennas for all Applications, 1st edn. McGraw-Hill (2002)Google Scholar
  69. 69.
    Chen, Z.N.: UWB antennas: design and application. In: 6th International Conference on Information, Communications & Signal Processing, vol. 2007, pp. 1–5. IEEE (2007)Google Scholar
  70. 70.
    Haider, N., Caratelli, D., Yarovoy, A.G.: Recent developments in reconfigurable and multiband antenna technology. Int. J. Antennas Propog. 1–14 (2013)CrossRefGoogle Scholar
  71. 71.
    Balanis, C.A.: Antenna Theory: Analysis and Design (2016)Google Scholar
  72. 72.
    Gross, F.B.: Frontiers in Antennas, 1st edn. McGraw-Hill (2011)Google Scholar
  73. 73.
    Morishita, H., et al.: Design concept of antennas for small mobile terminals and the future perspective. IEEE Antennas Propag. Mag. 44(5), 30–43 (2002)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Yang, T., Davis, W.A., Stutzman, W.L.: Fundamental-limit perspectives on ultrawideband antennas. Radio Sci. 44(01), 1–8 (2009)CrossRefGoogle Scholar
  75. 75.
    Harrington, R.F.: Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Nat. Bur. Stand 64(1), 1–12 (1960)zbMATHGoogle Scholar
  76. 76.
    Chu, L.J.: Physical limitations of omni-directional antennas. J. Appl. Phys. 19(12), 1163–1175 (1948)CrossRefGoogle Scholar
  77. 77.
    McLean, J.S.: A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas Propag. 44(5), 672 (1996)CrossRefGoogle Scholar
  78. 78.
    Bhatnagar, M.: Broadband design of microstrip antennas: recent trends and developments. In: International Conference on Recent Advances in Microwave Theory and Applications (2008)Google Scholar
  79. 79.
    Adamiuk, G., Zwick, T., Wiesbeck, W.: UWB antennas for communication systems. Proc. IEEE 100(7), 2308–2321 (2012)CrossRefGoogle Scholar
  80. 80.
    Sipal, V., Allen, B., Edwards, D., Honary, B.: Twenty years of ultrawideband: opportunities and challenges. IET Commun. 6(10), 1147 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Jusoh, M., et al.: A MIMO antenna design challenges for UWB application. Prog. Electromagnet. Res. B 36, 357–371 (2012)CrossRefGoogle Scholar
  82. 82.
    Adamiuk, G., Wiesbeck, W., Zwick, T.: Multi-mode antenna feed for ultra wideband technology, In: IEEE Radio Wirel. Symp. vol. 2009, pp. 578–581 (2009)Google Scholar
  83. 83.
    Tang, M.C., Wang, H., Deng, T., Ziolkowski, R.W.: Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters. IEEE Trans. Antennas Propag. 64(8), 3292–3301 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Tang, M.C., Shi, T., Ziolkowski, R.W.: Planar ultrawideband antennas with improved realized gain performance. IEEE Trans. Antennas Propag. 64, 61–69 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Grosswindhager, B., et al.: Poster: Switchable directional antenna system for UWB-based internet of things applications. In: Proceedings of the 14th EWSN Conference (2017)Google Scholar
  86. 86.
    Bhatia, D., Kumar, D.M., Sharma, A.: A beam scanning UWB antenna system for wireless applications. Intern. J. Electron. Eng. 3(1) (2011)Google Scholar
  87. 87.
    Mottola, L., et al.: Electronically-switched directional antennas for wireless sensor networks: a full-stack evaluation. In: IEEE International Conference on Sensing, Communication and Networking (2013)Google Scholar
  88. 88.
    Catarinucci, L., Guglielmi, S., Patrono, L., Tarricone, L.: Switched-beam antenna for wireless sensor network nodes. Prog. Electrom. Res. C 39, 193–207 (2013)CrossRefGoogle Scholar
  89. 89.
    Demirkol, I., Ersoy, C., Alagoz, F., et al.: MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121 (2006)CrossRefGoogle Scholar
  90. 90.
    Huang, P., Xiao, L., Soltani, S., et al.: The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(1), 101–120 (2013)CrossRefGoogle Scholar
  91. 91.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks, In: Joint Conference of the IEEE Computer and Communications Societies (2002)Google Scholar
  92. 92.
    Van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the 1st SenSys Conference (2003)Google Scholar
  93. 93.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th SenSys Conference (2006)Google Scholar
  94. 94.
    Schuß, M., Boano, C.A., Weber, M., Römer, K.: A competition to push the dependability of low-power wireless protocols to the edge. In: Proceedings of the 14th EWSN Conference (2017)Google Scholar
  95. 95.
    Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low power data gathering in sensor networks. In: Proceedings of the 6th IPSN Conference (2007)Google Scholar
  96. 96.
    Bober, W., Bleakley, C.J.: Bailighpulse: a low duty cycle data gathering protocol for mostly-off wireless sensor networks. Comput. Netw. 69, 51–65 (2014)CrossRefGoogle Scholar
  97. 97.
    Boano, C.A., Römer, K.: External Radio Interference. In: Radio Link Quality Estimation in Low-Power Wireless Networks. Springer International Publishing (2013)Google Scholar
  98. 98.
    Wu, Y., Stankovic, J.A., He, T., Lin, S.: Realistic and efficient multi-channel communications in wireless sensor networks. In: Proceedings of the 27th IEEE INFOCOM Conference (2008)Google Scholar
  99. 99.
    Kim, Y., Shin, H., Cha, H.: Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In: Proceedings of the 7th IEEE IPSN Conference (2008)Google Scholar
  100. 100.
    Rajendran, V., et al.: Energy-efficient, collision-free medium access control for wireless sensor networks. Wirel. Netw. 12(1), 63–78 (2006)CrossRefGoogle Scholar
  101. 101.
    van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless sensor networks: reducing preamble transmissions and transceiver state switches. In: Proceedings of the \(1^{st}\), International Workshop on Networked Sensing Systems (INSS) (2004)Google Scholar
  102. 102.
    IEEE Standard for Local and metropolitan area networks. Part 15.4. Amendment 1: MAC sublayer. IEEE Computer Society Std. 802.15.4e (2012)Google Scholar
  103. 103.
    Abramson, N.: The ALOHA system: Another alternative for computer communications. In: Proceedings of the Fall Joint Computer Conference (1970)Google Scholar
  104. 104.
    Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part i-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)zbMATHCrossRefGoogle Scholar
  105. 105.
    Tobagi, F., Kleinrock, L.: Packet switching in radio channels: Part ii-the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Trans. Commun. 23(12), 1417–1433 (1975)zbMATHCrossRefGoogle Scholar
  106. 106.
    Karn, P.: MACA-a new channel access method for packet radio. In: ARRL/CRRL Amateur radio 9th Computer Networking Conference, vol. 140 (1990)Google Scholar
  107. 107.
    IEEE Standard for Low-Rate Wireless Networks. IEEE Computer Society Standards, 802.15.4 (2015)Google Scholar
  108. 108.
    Zhou, G., Stankovic, J.A., Son, S.H.: Crowded spectrum in wireless sensor networks. In: Proceedings of the 3rd Workshop on Embedded Networked Sensors (EmNets) (2006)Google Scholar
  109. 109.
    Petrova, M., et al.: Interference measurements on performance degradation between colocated IEEE 802.11g/n and IEEE 802.15.4 networks. In: Proceedings of the 6th ICN Conference (2007)Google Scholar
  110. 110.
    IEEE Standard for Local and metropolitan area networks. Part 15.4. Amendment 1: Add Alternate PHYs. IEEE Standard 802.15.4a (2007)Google Scholar
  111. 111.
    Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)CrossRefGoogle Scholar
  112. 112.
    Catherwood, P.A., Scanlon, W.G.: Ultra-wideband communications-an idea whose time has still yet to come? IEEE Antennas Propag. Mag. 57(2) (2015)CrossRefGoogle Scholar
  113. 113.
    DW1000 Datasheet. Version 2.09. DecaWave Ltd. (2016)Google Scholar
  114. 114.
    Kempke, B., et al.: Surepoint: Exploiting ultra wideband flooding and diversity to provide robust, scalable, high-fidelity indoor localization. In: Proceedings of the 14th SenSys Conference (2016)Google Scholar
  115. 115.
    Conti, A., Dardari, D., Win, M.Z.: Experimental results on cooperative UWB based positioning systems. In: 2008 IEEE International Conference on Ultra-Wideband (2008)Google Scholar
  116. 116.
    Chehri, A., Fortier, P., Tardif, P.M.: UWB-based sensor networks for localization in mining environments. Ad Hoc Netw. 7(5), 987–1000 (2009)CrossRefGoogle Scholar
  117. 117.
    Chipara, O., Lu, C., Bailey, T.C. Roman, G.-C.: Reliable clinical monitoring using wireless sensor networks: Experiences in a step-down hospital unit. In: Proceedings of the 8th SenSys Conference, ser. SenSys ’10 (2010)Google Scholar
  118. 118.
    Angelopoulos, C.M., et al.: A smart system for garden watering using wireless sensor networks. In: Proceedings of the 9th ACM Symp. on Mobility Management and Wireless Access (2011)Google Scholar
  119. 119.
    Shen, X., Zhuang, W., Jiang, H., Cai, J.: Medium access control in ultra-wideband wireless networks. IEEE Trans. Veh. Technol. 54(5), 1663–1677 (2005)CrossRefGoogle Scholar
  120. 120.
    Sousa, E.S., Silvester, J.A.: Spreading code protocols for distributed spread-spectrum packet radio networks. IEEE Trans. Commun. 36(3), 272–281 (1988)CrossRefGoogle Scholar
  121. 121.
    Karapistoli, E., et al.: MAC protocols for ultra-wideband ad hoc and sensor networking: A survey. In: 4th International Congress on Ultra Modern Telecommunications and Control Systems (2012)Google Scholar
  122. 122.
    Liang, C.-J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving Wi-Fi interference in low power ZigBee networks. In: Proceedings of the 8th SenSys Conference (2010)Google Scholar
  123. 123.
    Rao, V.P., Marandin, D.: Adaptive backoff exponent algorithm for Zigbee (IEEE 802.15.4). In:International Conference on Next Generation Wired/Wireless Networking (2006)CrossRefGoogle Scholar
  124. 124.
    Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proceedings of the 10th International Conference on Mobile Computing and Networking (2004)Google Scholar
  125. 125.
    Beutel, J.: Fast-prototyping using the btnode platform. In: Proceedings of the Design Automation & Test in Europe Conference, vol. 1 (2006)Google Scholar
  126. 126.
    Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J.A., He, T.: ATPC: Adaptive transmission power control for wireless sensor networks. In: Proceedings of the 4th SenSys Conference (2006)Google Scholar
  127. 127.
    Cuomo, F., Martello, C., Baiocchi, A., et al.: Radio resource sharing for ad hoc networking with UWB. IEEE J. Sel. Areas Commun. 20(9), 1722–1732 (2002)CrossRefGoogle Scholar
  128. 128.
    DecaWave Ltd.: APR001 Part2 Application Note. Non line of sight operation and optimizations to improve performance in DW1000 based systems, version 1.4 (2014)Google Scholar
  129. 129.
    Watteyne, T., Lanzisera, S., Mehta, A., et al.: Mitigating multipath fading through channel hopping in wireless sensor networks. In: Proceedings of the International Conference on Communication (2010)Google Scholar
  130. 130.
    Song, J., Han, S., Mok, A., et al.: WirelessHART: Applying wireless technology in real-time industrial process control. In: Real-Time & Embedded Technology and Applications Symposium (2008)Google Scholar
  131. 131.
  132. 132.
    Du, P., Roussos, G.: Adaptive time slotted channel hopping for wireless sensor networks. In: Proceedings of the 4th Computer Science and Electronic Engineering Conference (2012)Google Scholar
  133. 133.
    Hauer, J.-H., Handziski, V., Wolisz, A.: Experimental study of the impact of WLAN interference on IEEE 802.15.4 body area networks. In: Proceedings of the \(6^{th}\) EWSN Conference (2009)Google Scholar
  134. 134.
    Musaloiu-E, R., Terzis, A.: Minimising the effect of WiFi interference in 802.15.4 wireless sensor networks. Int. J. Sens. Netw. 3(1), 43–54 (2007)Google Scholar
  135. 135.
    Zúñiga, M.A., Irzynska, I., Hauer, J.-H., et al.: Link quality ranking: Getting the best out of unreliable links. In: Proceedings of the \(7^{th}\) DCOSS Conference (2011)Google Scholar
  136. 136.
    Hermans, F., et al.: Light-weight approach to online detection and classification of interference in 802.15.4-based sensor networks. In: Proceedings of the 3rd CONET Workshop (2012)CrossRefGoogle Scholar
  137. 137.
    Boers, N.M., et al.: Sampling and classifying interference patterns in a wireless sensor network. ACM Trans. Sens. Netw. 9(1), 2:1–2:19 (2012)CrossRefGoogle Scholar
  138. 138.
    Kerkez, B., Watteyne, T., Magliocco, M., et al.: Feasibility analysis of controller design for adaptive channel hopping. In: Proceedings of the \(4^{th}\) Valuetools Conference (2009)Google Scholar
  139. 139.
    Xu, R., Shi, G., Luo, J., Zhao, Z., Shu, Y.: MuZi: Multi-channel ZigBee networks for avoiding WiFi interference. In: Proceedings of the \(4^{th}\) CPSCOM Conference (2011)Google Scholar
  140. 140.
    Varshney, A., et al.: Directional transmissions and receptions for high-throughput bulk forwarding in wireless sensor networks. In: Proceedings of the 13th SenSys Conference (2015)Google Scholar
  141. 141.
    Giorgetti, G., Cidronali, A., Gupta, S.K.S., Manes, G.: Exploiting low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless sensor networks. In: Proceedings of the EuWiT (2007)Google Scholar
  142. 142.
    Michalopoulou, A., Koxias, E., Lazarakis, F., et al.: Investigation of directional antennas effect on energy efficiency and reliability of the IEEE 802.15.4 standard in outdoor wireless sensor networks. In: Proceedings of the 15th MMS Symposium (2015)Google Scholar
  143. 143.
    Dai, H.-N., Ng, K.-W., Li, M., Wu, M.-Y.: An overview of using directional antennas in wireless networks. Int. J. Commun. Syst. 26(4), 413–448 (2013)CrossRefGoogle Scholar
  144. 144.
    Nasipuri, A., et al.: A MAC protocol for mobile ad hoc networks using directional antennas. In: Proceedings of the IEEE Wireless Communication and Networking Conference, vol. 3 (2000)Google Scholar
  145. 145.
    Radunovic, B., Le Boudec, J.-Y.: Optimal power control, scheduling, and routing in UWB networks. IEEE J. Sel. Areas in Commun. 22(7), 1252–1270 (2004)CrossRefGoogle Scholar
  146. 146.
    Qi, Y., et al.: Clear channel assessment (CCA) with multiplexed preamble symbols for impulse ultra-wideband (UWB) communications. In: IEEE International Conference on UWB (2006)Google Scholar
  147. 147.
    Lazik, P., Rajagopal, N., Shih, O., Sinopoli, B., Rowe, A.: ALPS: A bluetooth and ultrasound platform for mapping and localization. In: Proceedings of the 13th SenSys Conference, ser. SenSys ’15 (2015)Google Scholar
  148. 148.
    Gezici, S., et al.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 22(4), 70–84 (2005)CrossRefGoogle Scholar
  149. 149.
    Alcock, P., Brown, J., Roedig, U.: Implementation and evaluation of combined positioning and communication. In: Real-World Wireless Sensor Networks, pp. 126–137 (2010)CrossRefGoogle Scholar
  150. 150.
    Cheong, P., Oppermann, I.: An energy-efficient positioning-enabled MAC protocol (PMAC) for UWB sensor networks. In : IST Mobile and Wireless Communication Summit (2005)Google Scholar
  151. 151.
    Kulmer, J., Hinteregger, S., Großwindhager, B., Rath, M., Bakr, M., Leitinger, E., Witrisal, K.: Using decawave UWB transceivers for high-accuracy multipath-assisted indoor positioning. In: IEEE ICC 2017 Workshop on Advances in Network Localization and Navigation (ANLN) (2017)Google Scholar
  152. 152.
    Greiner, P., Grosinger, J., Schweighofer, J., Steffan, C., Wilfling, S., Holweg, G., Bösch, W.: A system on chip crystal-less wireless sub-GHz transmitter. IEEE Trans. Microw. Theory Tech. (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Bernhard Großwindhager
    • 1
  • Michael Rath
    • 2
  • Mustafa S. Bakr
    • 3
  • Philipp Greiner
    • 3
  • Carlo Alberto Boano
    • 1
  • Klaus Witrisal
    • 2
  • Fabrizio Gentili
    • 3
  • Jasmin Grosinger
    • 3
  • Wolfgang Bösch
    • 3
  • Kay Römer
    • 1
    Email author
  1. 1.Institute of Technical InformaticsGraz University of TechnologyGrazAustria
  2. 2.Signal Processing and Speech Communication LaboratoryGraz University of TechnologyGrazAustria
  3. 3.Institute for Microwave and Photonic EngineeringGraz University of TechnologyGrazAustria

Personalised recommendations