Skip to main content

Robot and Drone Localization in GPS-Denied Areas

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 164)

Abstract

Robots and drones have recently become commonplace, with more advanced and affordable units available every year. While initially they may have been marketed primarily to hobbyists, consumer robots (and drones in particular) have become much more than just toys; they have garnered more and more attention from researchers across fields such as environmental sensing, surveillance, computer vision, machine learning, systems engineering, and networking. Robots and drones provide a rich playground in which to tackle challenging problems aimed at increasing the autonomy of machines. Moreover, as these machines become ever more ubiquitous, there arises both the desire and need to provide a way for them to coordinate their movements and actions so that they can accomplish tasks such as navigating without collision or mapping an area. Such coordination becomes more difficult once the space that must be navigated is in a GPS-denied area. In this chapter, the many facets of robot and drone coordination in GPS-denied areas are discussed, addressing issues associated with localization and coordinating multiple agents as they attempt to accomplish a common goal.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-92384-0_17
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-92384-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    The word drone has historically referred to unmanned aircraft (military aircraft in particular), but aside from the form of propulsion, there is an extraordinary amount of overlap between what we refer to as drones and what we normally call robots. Because of this, as well as the militaristic implications of the word drone, we will hereon refer to flying or airborne robots as simply robots unless the form of propulsion is of importance.

  2. 2.

    The chapter “Robotic Wireless Sensor Networks” dives deeply into various communication challenges and serves as an excellent companion to this chapter.

  3. 3.

    http://pdcc.ntu.edu.sg/wands/Atheros/.

  4. 4.

    https://github.com/libing64/manifold_linux.

  5. 5.

    http://www.timedomain.com/.

  6. 6.

    https://www.pozyx.io/.

  7. 7.

    http://www.decawave.com/.

  8. 8.

    http://inilabs.com/products/dynamic-vision-sensors/.

  9. 9.

    http://robotsforroboticists.com/camera-lens-selection/, http://www.baslerweb.com/en/vision-campus/camera-selection.

  10. 10.

    For more on LSD-SLAM see http://vision.in.tum.de/research/vslam/lsdslam.

  11. 11.

    For more information on the ORB-SLAM project visit http://webdiis.unizar.es/~raulmur/orbslam/.

  12. 12.

    or the more recent DDF-SAM 2.0.

References

  1. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)

    CrossRef  Google Scholar 

  2. Bardwell, J.: You believe you understand what you think i said: the truth about 802.11 signal and noise metrics (2004)

    Google Scholar 

  3. Bargshady, N., Alsindi, N.A., Pahlavan, K., Ye, Y., Akgul, F.O.: Bounds on performance of hybrid WiFi-UWB cooperative RF localization for robotic applications. In: 2010 IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops (PIMRC Workshops), pp. 277–282. IEEE (2010)

    Google Scholar 

  4. Bleser, G., Stricker, D.: Advanced tracking through efficient image processing and visual-inertial sensor fusion. Comput. Graph. 33(1), 59–72 (2009)

    CrossRef  Google Scholar 

  5. Bullo, F., Cortes, J., Martinez, S.: Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton University Press (2009)

    Google Scholar 

  6. Charfi, Y., Wakamiya, N., Murata, M.: Challenging issues in visual sensor networks. IEEE Wirel. Commun. 16(2), 44–49 (2009)

    CrossRef  Google Scholar 

  7. Cruz, D., McClintock, J., Perteet, B., Orqueda, O.A., Cao, Y., Fierro, R.: Decentralized cooperative control-a multivehicle platform for research in networked embedded systems. IEEE Control Syst. 27(3), 58–78 (2007)

    CrossRef  Google Scholar 

  8. Cunningham, A., Indelman, V., Dellaert, F.: DDF-SAM 2.0: consistent distributed smoothing and mapping. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5220–5227. IEEE (2013)

    Google Scholar 

  9. Cunningham, A., Paluri, M., Dellaert, F.: DDF-SAM: fully distributed slam using constrained factor graphs. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3025–3030. IEEE (2010)

    Google Scholar 

  10. Deepesh, P., Rath, R., Tiwary, A., Rao, V.N., Kanakalata, N.: Experiences with using iBeacons for indoor positioning. In: Proceedings of the 9th India Software Engineering Conference, pp. 184–189. ACM (2016)

    Google Scholar 

  11. Desai, J.P., Ostrowski, J., Kumar, V.: Controlling formations of multiple mobile robots. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, vol. 4, pp. 2864–2869. IEEE (1998)

    Google Scholar 

  12. Drawil, N.M., Amar, H.M., Basir, O.A.: Gps localization accuracy classification: a context-based approach. IEEE Trans. Intell. Transp. Syst. 14(1), 262–273 (2013)

    CrossRef  Google Scholar 

  13. Engel, J., Schöps, T., Cremers, D. (2014a). LSD-slam: large-scale direct monocular slam. In: European Conference on Computer Vision, pp. 834–849. Springer

    Google Scholar 

  14. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 62(11), 1646–1656 (2014b)

    CrossRef  Google Scholar 

  15. Eren, T.: Cooperative localization in wireless ad hoc and sensor networks using hybrid distance and bearing (angle of arrival) measurements. EURASIP J. Wirel. Commun. Netw. 2011(1), 1–18 (2011)

    CrossRef  Google Scholar 

  16. Ergen, M.: IEEE 802.11 tutorial. University of California Berkeley, 70 (2002)

    Google Scholar 

  17. FAA: FAA aerospace forecast fiscal years 2016–2036 (2016). https://www.faa.gov/data_research/aviation/

  18. Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 993–998. IEEE (2013)

    Google Scholar 

  19. Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), vol. 812, Tampa, FL, USA (2014)

    Google Scholar 

  20. Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular slam with multiple micro aerial vehicles. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3962–3970. IEEE (2013)

    Google Scholar 

  21. Fox, D., Thrun, S., Burgard, W., Dellaert, F.: Particle filters for mobile robot localization. Sequential Monte Carlo Methods in Practice, pp. 401–428. Springer (2001)

    Google Scholar 

  22. Garcia-Fidalgo, E., Ortiz, A.: Vision-based topological mapping and localization methods: a survey. Robot. Auton. Syst. 64, 1–20 (2015)

    CrossRef  Google Scholar 

  23. Gast, M.: 802.11 Wireless Networks: The Definitive Guide. Southeast University Press (2006)

    Google Scholar 

  24. Gast, M.S.: 802.11 ac: A Survival Guide. O’Reilly Media, Inc. (2013)

    Google Scholar 

  25. González, J., Blanco, J.-L., Galindo, C., Ortiz-de Galisteo, A., Fernandez-Madrigal, J.-A., Moreno, F.A., Martínez, J.L.: Mobile robot localization based on ultra-wide-band ranging: a particle filter approach. Robot. Auton. Syst. 57(5), 496–507 (2009)

    CrossRef  Google Scholar 

  26. Google: Google UAS airspace system overview (2015). https://utm.arc.nasa.gov/documents.shtml

  27. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11n traces with channel state information. ACM SIGCOMM. Comput. Commun. Rev. 41(1), 53–53 (2011)

    CrossRef  Google Scholar 

  28. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free localization schemes for large scale sensor networks. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 81–95. ACM (2003)

    Google Scholar 

  29. Hossain, A.M., Soh, W.-S.: A survey of calibration-free indoor positioning systems. Comput. Commun. 66, 1–13 (2015)

    CrossRef  Google Scholar 

  30. Howard, A., Mataric, M.J., Sukhatme, G.S.: Cooperative relative localization for mobile robot teams: an ego-centric approach. Technical Report, DTIC Document (2003)

    Google Scholar 

  31. Iwase, T., Shibasaki, R.: Infra-free indoor positioning using only smartphone sensors. In: 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2013)

    Google Scholar 

  32. Jennings, C., Murray, D., Little, J.J.: Cooperative robot localization with vision-based mapping. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, 1999, vol. 4, pp. 2659–2665. IEEE (1999)

    Google Scholar 

  33. Kempke, B., Pannuto, P., Dutta, P.: Polypoint: guiding indoor quadrotors with ultra-wideband localization. In: Proceedings of the 2nd International Workshop on Hot Topics in Wireless, pp. 16–20. ACM

    Google Scholar 

  34. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007. ISMAR 2007, pp. 225–234. IEEE

    Google Scholar 

  35. Kotaru, M., Joshi, K., Bharadia, D., Katti, S.: SpotFi: decimeter level localization using WiFi. ACM SIGCOMM Comput. Commun. Rev. 45, 269–282 (2015). ACM

    CrossRef  Google Scholar 

  36. Krishnan, S., Sharma, P., Guoping, Z., Woon, O.H.: A UWB based localization system for indoor robot navigation. In: 2007 IEEE International Conference on Ultra-Wideband, pp. 77–82. IEEE (2007)

    Google Scholar 

  37. Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 483–494. ACM

    Google Scholar 

  38. La Delfa, G.C., Monteleone, S., Catania, V., De Paz, J.F., Bajo, J.: Performance analysis of visualmarkers for indoor navigation systems. Front. Inf. Technol. Electron. Eng. 17(8), 730–740 (2016)

    CrossRef  Google Scholar 

  39. Lanzisera, S., Zats, D., Pister, K.S.: Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sens. J. 11(3), 837–845 (2011)

    CrossRef  Google Scholar 

  40. Li, Z., Braun, T., Dimitrova, D.C.: A passive WiFi source localization system based on fine-grained power-based trilateration. In: 2015 IEEE 16th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2015)

    Google Scholar 

  41. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews), 37(6), 1067–1080 (2007)

    CrossRef  Google Scholar 

  42. Loewen, N., Garc, E.O., Mayol-Cuevas, W., et al.: Towards autonomous flight of micro aerial vehicles using ORB-SLAM. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 241–248. IEEE (2015)

    Google Scholar 

  43. Mariakakis, A.T., Sen, S., Lee, J., Kim, K.-H.: Sail: single access point-based indoor localization. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, pp. 315–328. ACM (2014)

    Google Scholar 

  44. Montijano, E., Aragues, R., Sagues, C.: Distributed data association in robotic networks with cameras and limited communications. IEEE Trans. Robot. 29(6), 1408–1423 (2013)

    CrossRef  Google Scholar 

  45. Morales, J., Roysdon, P., Kassas, Z.: Signals of opportunity aided inertial navigation. In: Proceedings of ION GNSS Conference (2016)

    Google Scholar 

  46. Mur-Artal, R., Montiel, J., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    CrossRef  Google Scholar 

  47. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Global Telecommunications Conference, 2001, GLOBECOM’01, IEEE, vol. 5, pp 2926–2931. IEEE (2001)

    Google Scholar 

  48. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Sig. Process. Mag. 22(4), 54–69 (2005)

    CrossRef  Google Scholar 

  49. Phanse, K., Gopinath, K.: A brief tutorial on IEEE 802.11n (2009). http://www.slideshare.net/gopinathkn/80211n-tutorial

  50. Piasco, N., Marzat, J., Sanfourche, M.: Collaborative localization and formation flying using distributed stereo-vision. In: IEEE International Conference on Robotics and Automation, Stockholm, Sweden (2016)

    Google Scholar 

  51. Rekleitis, I., Babin, P., DePriest, A., Das, S., Falardeau, O., Dugas, O., and Giguere, P.: Experiments in quadrotor formation flying using on-board relative localization (2015)

    Google Scholar 

  52. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Suarez-Fernandez, R., Campoy, P.: A system for the design and development of vision-based multi-robot quadrotor swarms. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 640–648. IEEE (2014)

    Google Scholar 

  53. Santana, L.V., Brandao, A.S., Sarcinelli-Filho, M., Carelli, R.: A trajectory tracking and 3D positioning controller for the AR. drone quadrotor. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 756–767. IEEE (2014)

    Google Scholar 

  54. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    CrossRef  Google Scholar 

  55. Segura, M., Hashemi, H., Sisterna, C., Mut, V.: Experimental demonstration of self-localized ultra wideband indoor mobile robot navigation system. In: 2010 International Conference onIndoor Positioning and Indoor Navigation (IPIN), pp. 1–9. IEEE (2010)

    Google Scholar 

  56. Sen, S., Lee, J., Kim, K.-H., Congdon, P.: Avoiding multipath to revive inbuilding WiFi localization. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 249–262. ACM (2013)

    Google Scholar 

  57. Shamaei, K., Khalife, J., Kassas, Z.: Performance characterization of positioning in LTE systems. In: Proceedings of ION GNSS Conference (2016)

    Google Scholar 

  58. Silva, B., Pang, Z., Åkerberg, J., Neander, J., Hancke, G.: Experimental study of UWB-based high precision localization for industrial applications. In: 2014 IEEE International Conference on Ultra-WideBand (ICUWB), pp. 280–285. IEEE (2014)

    Google Scholar 

  59. Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimed. (2009)

    Google Scholar 

  60. Strasdat, H., Montiel, J., Davison, A.J.: Scale drift-aware large scale monocular slam. In: Proceedings of Robotics: Science and Systems VI (2010)

    Google Scholar 

  61. Stroupe, A.W., Martin, M.C., Balch, T.: Distributed sensor fusion for object position estimation by multi-robot systems. In: Proceedings of 2001 ICRA, IEEE International Conference on Robotics and Automation, 2001, vol. 2, pp. 1092–1098. IEEE (2001)

    Google Scholar 

  62. Thrun, S.: Particle filters in robotics. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 511–518. Morgan Kaufmann Publishers Inc (2002)

    Google Scholar 

  63. Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. Springer Handbook of Robotics. Springer, pp. 871–889 (2008)

    Google Scholar 

  64. Tiemann, J., Schweikowski, F., Wietfeld, C.: Design of an UWB indoor-positioning system for UAV navigation in GNSS-denied environments. In: 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2015)

    Google Scholar 

  65. Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single WiFi access point. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pp. 165–178 (2016)

    Google Scholar 

  66. Wu, K., Xiao, J., Yi, Y., Chen, D., Luo, X., Ni, L.M.: Csi-based indoor localization. IEEE Trans. Parallel Distrib. Syst. 24(7), 1300–1309 (2013)

    CrossRef  Google Scholar 

  67. Xiong, J., Sundaresan, K., Jamieson, K.: Tonetrack: leveraging frequency-agile radios for time-based indoor wireless localization. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 537–549. ACM (2015)

    Google Scholar 

  68. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10(12), 399 (2013)

    CrossRef  Google Scholar 

  69. Zhuang, Y., El-Sheimy, N.: Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation. IEEE Sens. J. 16(1), 224–234 (2016)

    CrossRef  Google Scholar 

  70. Zou, D., Tan, P.: Coslam: collaborative visual slam in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 354–366 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Siva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Siva, J., Poellabauer, C. (2019). Robot and Drone Localization in GPS-Denied Areas. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-92384-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92384-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92383-3

  • Online ISBN: 978-3-319-92384-0

  • eBook Packages: EngineeringEngineering (R0)