Advertisement

Robotic Wireless Sensor Networks

  • Pradipta GhoshEmail author
  • Andrea Gasparri
  • Jiong Jin
  • Bhaskar Krishnamachari
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 164)

Abstract

In this chapter, we present a literature survey of an emerging, cutting-edge, and multidisciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define an RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning, and adaptation. While both of the component areas, i.e., robotics and WSN, are very well known and well explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields, which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN-related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state of the arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature and identify topics that require more research attention in the future.

References

  1. 1.
    Penders, J., Alboul, L., Witkowski, U., Naghsh, A., Saez-Pons, J., Herbrechtsmeier, S., El-Habbal, M.: A robot swarm assisting a human fire-fighter. Adv. Robot. 25(1–2), 93–117 (2011)CrossRefGoogle Scholar
  2. 2.
    Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gazi, V., Kevin, M.P.: Swarm Stability and Optimization. Springer (2011)Google Scholar
  4. 4.
    Aahin, E., Winfield, A.: Special issue on swarm robotics. Swarm Intell. 2(2–4), 69–72 (2008)Google Scholar
  5. 5.
    Theodore, S.R.: Wireless Communications: Principles and Practice. Prentice Hall PTR, New Jersey (1996)zbMATHGoogle Scholar
  6. 6.
    Ollero, A., Alcázar, J., Cuesta, F., López-Pichaco, F., Nogales, C.: Helicopter teleoperation for aerial monitoring in the comets multi-uav system. In: Proceedings of the 3rd IARP Workshop on Service, Assistive and Personal Robots (2003)Google Scholar
  7. 7.
    Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004)CrossRefGoogle Scholar
  8. 8.
    Murphy, R.R., Kravitz, J., Samuel, L.S., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  9. 9.
    Weiss, M.D., Peak, J., Schwengler, T.: A statistical radio range model for a robot manet in a subterranean mine. IEEE Trans. Veh. Technol. 57(5), 2658–2666 (2008)CrossRefGoogle Scholar
  10. 10.
    Baber, J., Kolodko, J., Noel, T., Parent, M., Vlacic, L.: Cooperative autonomous driving: intelligent vehicles sharing city roads. IEEE Robot. Autom. Mag. 12(1), 44–49 (2005)CrossRefGoogle Scholar
  11. 11.
    Nagel, R., Eichler, S., Eberspacher, J.: Intelligent wireless communication for future autonomous and cognitive automobiles. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV) (2007 )Google Scholar
  12. 12.
    Milanés, V., Alonso, J., Bouraoui, L., Ploeg, J.: Cooperative maneuvering in close environments among cybercars and dual-mode cars. IEEE Trans. Intell. Transp. Syst. 12(1), 15–24 (2011)CrossRefGoogle Scholar
  13. 13.
    Xiong, N., Vasilakos, A.V., Yang, L.T., Pedrycz, W., Zhang, Y., Li, Y.: A resilient and scalable flocking scheme in autonomous vehicular networks. Mob. Netw. Appl. 15(1), 126–136 (2010)CrossRefGoogle Scholar
  14. 14.
    Parker, L.E.: Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ibach, P., Milanovic, N., Richling, J., Stantchev, V., Wiesner, A., Malek, M.: Cero: Ce robots community. IEE Proc.-Softw. 152(5), 210–214 (2005)CrossRefGoogle Scholar
  16. 16.
    Kovács, T., Pásztor, A., Istenes, Z.: Connectivity in a wireless network of mobile robots doing a searching and collecting task. In: Proceedings of the IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI) (2009)Google Scholar
  17. 17.
    Steels, L.: Cooperation between distributed agents through self-organisation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1990)Google Scholar
  18. 18.
    Stilwell, D.J., Bay, J.S.: Toward the development of a material transport system using swarms of ant-like robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1993)Google Scholar
  19. 19.
    Nguyen, H.G., Pezeshkian, N., Raymond, M., Gupta, A., Spector, J.M.: Autonomous communication relays for tactical robots. Technical report, DTIC Document (2003)Google Scholar
  20. 20.
    Hsieh, M.A., Cowley, A., Keller, J.F., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C.J., Endo, Y., Arkin, R.C., Jung, B.: Adaptive teams of autonomous aerial and ground robots for situational awareness. J. Field Robot. 24(11–12), 991–1014 (2007)CrossRefGoogle Scholar
  21. 21.
    Erickson, J.K.: Living the dream-an overview of the mars exploration project. IEEE Robot. Autom. Mag. 13(2), 12–18 (2006)CrossRefGoogle Scholar
  22. 22.
    Calkins, D.: An overview of robogames [competitions]. IEEE Robot. Autom. Mag. 18(1), 14–15 (2011)CrossRefGoogle Scholar
  23. 23.
    Petelin, J.B., Nelson, M.E., Goodman, J.: Deployment and early experience with remote-presence patient care in a community hospital. Surg. Endosc. 21(1), 53–56 (2007)CrossRefGoogle Scholar
  24. 24.
    Baeg, S.-H., Park, J.-H., Koh, J., Park, K.-W., Baeg, M.-H.: Robomaidhome: a sensor network-based smart home environment for service robots. In: Proceedings of the IEEE International Symposium on Robot and Human interactive Communication (RO-MAN) (2007)Google Scholar
  25. 25.
    Baeg, S.-H., Park, J.-H., Koh, J., Park, K.-W., Baeg, M.-H.: Building a smart home environment for service robots based on rfid and sensor networks. In: Proceedings of the IEEE International Conference on Control, Automation and Systems (ICCAS) (2007)Google Scholar
  26. 26.
    De La Pinta, J.R., Maestre, J.M., Camacho, E.F., Alonso, I.G.: Robots in the smart home: a project towards interoperability. Int. J. Ad Hoc Ubiquitous Comput. 7(3), 192–201 (2011)CrossRefGoogle Scholar
  27. 27.
    Correll, N., Bachrach, J., Vickery, D., Rus, D.: Ad-hoc wireless network coverage with networked robots that cannot localize. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2009)Google Scholar
  28. 28.
    Batalin, M.A., Sukhatme, G.S.: Coverage, exploration and deployment by a mobile robot and communication network. Telecommun. Syst. 26(2–4), 181–196 (2004)CrossRefGoogle Scholar
  29. 29.
    Du, Z., Yang, W., Chen, Y., Sun, X., Wang, X., Xu, C.: Design of a robot cloud center. In: Proceedings of the International Symposium on Autonomous Decentralized Systems (ISADS) (2011)Google Scholar
  30. 30.
    Quintas, J., Menezes, P., Dias, J.: Cloud robotics: towards context aware robotic networks. In: Proceedings of the 16th IASTED International Conference on Robotic (2011)Google Scholar
  31. 31.
    Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Netw. 26(3), 28–34 (2012)CrossRefGoogle Scholar
  32. 32.
    Bullo, F., Cortes, J., Martinez, S.: Distributed control of robotic networks. Applied Mathematics Series. Princeton University Press (2009). http://coordinationbook.info
  33. 33.
    Yang, P., Freeman, R.A., Gordon, G.J., Lynch, K.M., Srinivasa, S.S., Sukthankar, R.: Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica 46(2), 390–396 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  35. 35.
    Sun, G., Jie, C., Wei, G., Liu, R.K.J.: Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs. IEEE Signal Process. Mag. 22(4), 12–23 (2005)CrossRefGoogle Scholar
  36. 36.
    Guvenc, I., Chong, C.-C.: A survey on toa based wireless localization and nlos mitigation techniques. IEEE Commun. Surv. Tutor. 11(3), 107–124 (2009)CrossRefGoogle Scholar
  37. 37.
    Amundson, I., Koutsoukos, X.D.: A survey on localization for mobile wireless sensor networks. In: Mobile Entity Localization and Tracking in GPS-less Environnments, pp. 235–254. Springer (2009)Google Scholar
  38. 38.
    Mostofi, Y., Sen, P.: Compressive cooperative mapping in mobile networks. In: Proceedings of the American Control Conference (ACC) (2009 )Google Scholar
  39. 39.
    Gonzalez-Ruiz, A., Ghaffarkhah, A., Mostofi, Y.: An integrated framework for obstacle mapping with see-through capabilities using laser and wireless channel measurements. IEEE Sens. J. 14(1), 25–38 (2014)CrossRefGoogle Scholar
  40. 40.
    Gonzalez-Ruiz, A., Ghaffarkhah, A., Mostofi, Y.: A comprehensive overview and characterization of wireless channels for networked robotic and control systems. J. Robot. 2011 (2012)Google Scholar
  41. 41.
    Mostofi, Y., Sen, P: Compressed mapping of communication signal strength. In: Proceedings of the Military Communications Conference (MILCOM) (2008)Google Scholar
  42. 42.
    Candès, E.J.:: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452. Madrid, Spain (2006)Google Scholar
  43. 43.
    Mostofi, Y., Gonzalez-Ruiz, A., Gaffarkhah, A., Li, D.: Characterization and modeling of wireless channels for networked robotic and control systems-a comprehensive overview. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2009)Google Scholar
  44. 44.
    Mostofi, Y.: Compressive cooperative sensing and mapping in mobile networks. IEEE Trans. Mob. Comput. 10(12), 1769–1784 (2011)CrossRefGoogle Scholar
  45. 45.
    Malmirchegini, M., Mostofi, Y.: On the spatial predictability of communication channels. IEEE Trans. Wirel. Commun. 11(3), 964–978 (2012)CrossRefGoogle Scholar
  46. 46.
    Mostofi, Y., Malmirchegini, M., Ghaffarkhah, A.: Estimation of communication signal strength in robotic networks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  47. 47.
    Yan, Y., Mostofi, Y.: Co-optimization of communication and motion planning of a robotic operation under resource constraints and in fading environments. IEEE Trans. Wirel. Commun. 12(4), 1562–1572 (2013)CrossRefGoogle Scholar
  48. 48.
    Mostofi, Y.: Cooperative wireless-based obstacle/object mapping and see-through capabilities in robotic networks. IEEE Trans. Mob, Comput (2012)Google Scholar
  49. 49.
    Depatla, S., Buckland, L., Mostofi, Y.: X-Ray vision with only WiFi power measurements using Rytov wave models. IEEE Trans. Veh. Technol. 64, 1376–1387 (2015)CrossRefGoogle Scholar
  50. 50.
    Hsieh, M.-Y.A., Kumar, V., Taylor, C.J.: Constructing radio signal strength maps with multiple robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2004)Google Scholar
  51. 51.
    Hsieh, A.M., Cowley, A., Kumar, V., Taylor, C.J.: Maintaining network connectivity and performance in robot teams. J. Field Robot. 25(1–2), 111–131 (2008)CrossRefGoogle Scholar
  52. 52.
    Fink, J., Kumar, V.: Online methods for radio signal mapping with mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  53. 53.
    Fink, J., Ribeiro, A., Kumar, V.: Robust control of mobility and communications in autonomous robot teams. IEEE Access 1, 290–309 (2013)CrossRefGoogle Scholar
  54. 54.
    Wang, S., Krishnamachari, B., Ayanian, N: The optimism principle: a unified framework for optimal robotic network deployment in an unknown obstructed environment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015 )Google Scholar
  55. 55.
    Ghosh, P., Krishnamachari, B.: Interference power bound analysis of a network of wireless robots. CoRR (2016). arXiv:1608.08261
  56. 56.
    Dagefu, F.T., Verma, G., Rao, C.R., Paul, L.Y., Fink, J.R., Sadler, B.M.: Sarabandi, Short-range low-vhf channel characterization in cluttered environments. IEEE Trans. Antennas Propag. 63(6), 2719–2727 (2015)zbMATHCrossRefGoogle Scholar
  57. 57.
    Boillot, N., Dhoutaut, D., Bourgeois, J.: Large scale mems robots cooperative map building based on realistic simulation of nano-wireless communications. Nano Commun. Netw. 6(2), 51–73 (2015)CrossRefGoogle Scholar
  58. 58.
    Qaraqe, K.A., Yarkan, S., Güzelgöz, S., Arslan, H.: Statistical wireless channel propagation characteristics in underground mines at 900 mhz: a comparative analysis with indoor channels. Ad hoc Netw. 11(4), 1472–1483 (2013)CrossRefGoogle Scholar
  59. 59.
    Das, S.R., Belding-Royer, E.M. Perkins, C.E.: Ad hoc on-demand Distance Vector (aodv) Routing (2003)Google Scholar
  60. 60.
    Chakeres, I.D., Belding-Royer, E.M.: Aodv routing protocol implementation design. In: Proceedings of the IEEE International Conference on Distributed Computing Systems Workshops (2004)Google Scholar
  61. 61.
    Deering, S.E.: Internet Protocol, Version 6 (ipv6) Specification (1998)Google Scholar
  62. 62.
    Johnson, D., Hu, Y.-C., Maltz, D.: The dynamic source routing protocol (dsr) for mobile ad hoc networks for ipv4. Technical report, RFC 4728 (2007)Google Scholar
  63. 63.
    Clausen, T., Jacquet, P.: Optimized link state routing protocol (olsr). Technical report, RFC 3626, (2003)Google Scholar
  64. 64.
    Johnson, D., Ntlatlapa, N., Aichele, C.: Simple Pragmatic Approach to Mesh Routing using Batman (2008)Google Scholar
  65. 65.
    Saumitra, M., Das, Y.C., Hu, C.S., Lee, G., Lu, Y.-H.: Mobility-aware ad hoc routing protocols for networking mobile robot teams. J. Commun. Netw. 9(3), 296–311 (2007)CrossRefGoogle Scholar
  66. 66.
    Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. Kluwer Int. Ser. Eng. Comput. Sci. 153–179 (1996)Google Scholar
  67. 67.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications (1999)Google Scholar
  68. 68.
    Lee, S.J., Su, W., Gerla, M.: On-demand multicast routing protocol in multihop wireless mobile networks. Mob. Netw. Appl. 7(6), 441–453 (2002)CrossRefGoogle Scholar
  69. 69.
    Abishek, T.K., Chithra, K.R., Ramesh, M.V.: Aer: adaptive energy efficient routing protocol for network of flying robots monitoring over disaster hit area. In: Proceedings of the Wireless and Optical Communications Conference (WOCC) (2012)Google Scholar
  70. 70.
    Matsumoto, A., Asama, H., Ishida, Y., Ozaki, K., Endo, I.: Communication in the autonomous and decentralized robot system actress. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1990)Google Scholar
  71. 71.
    Tiderko, A., Bachran, T., Hoeller, F., Schulz, D.: Rose-a framework for multicast communication via unreliable networks in multi-robot systems. Robot. Auton. Syst. 56(12), 1017–1026 (2008)CrossRefGoogle Scholar
  72. 72.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Weitzenfeld, A., Martínez-Gómez, L., Francois, J.P., Levin-Pick, A., Obraczka, K., Boice, J.: Multi-robot systems: extending robocup small-size architecture with local vision and ad-hoc networking. In: Proceedings of the IEEE 3rd Latin American Robotics Symposium (LARS) (2006)Google Scholar
  74. 74.
    Liu, H., Nayak, A., Stojmenović, I.: Localized mobility control routing in robotic sensor wireless networks. In: Mobile Ad-Hoc and Sensor Networks, pp. 19–31. Springer (2007)Google Scholar
  75. 75.
    Sugiyama, H., Tsujioka, T., Murata, M.: Qos routing in a multi-robot network system for urban search and rescue. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (2006)Google Scholar
  76. 76.
    Lin, C.R., Liu, J.-S.: Qos routing in ad hoc wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1426–1438 (1999)CrossRefGoogle Scholar
  77. 77.
    Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing (dsdv) for mobile computers. ACM SIGCOMM. Comput. Commun. Rev. 24(4), 234–244 (1994)CrossRefGoogle Scholar
  78. 78.
    Konolige, K., Ortiz, C., Vincent, R., Agno, A., Eriksen, M., Limketkai, B., Lewis, M., Briesemeister, L., Ruspini, E., Fox, D.: Large-scale robot teams. Multi-Robot Syst. Swarms Intell. Auton. 2, 193–204 (2003)Google Scholar
  79. 79.
    Bellur, B., Ogier, R.G.: A reliable, efficient topology broadcast protocol for dynamic networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (1999)Google Scholar
  80. 80.
    Ogier, R., Templin, F., Lewis, M.: Topology dissemination based on reverse-path forwarding (tbrpf). Technical report, IETF RFC 3684 (2004)Google Scholar
  81. 81.
    Sliwa, B., Behnke, D., Ide, C., Wietfeld, C.: Bat Mobile: Leveraging Mobility Control Knowledge for Efficient Routing in Mobile Robotic Networks (2016). arXiv preprint   arXiv:1607.01223
  82. 82.
    Karp, B., Kung, H.-T.: Gpsr: greedy perimeter stateless routing for wireless networks. In: Proceedings of the ACM International conference on Mobile computing and networking (MobiCom) (2000)Google Scholar
  83. 83.
    Son, D., Helmy, A., Krishnamachari, B.: The effect of mobility-induced location errors on geographic routing in mobile ad hoc sensor networks: analysis and improvement using mobility prediction. IEEE Trans. Mob. Comput. 3(3), 233–245 (2004)CrossRefGoogle Scholar
  84. 84.
    Rao, S.A., Pai, M., Boussedjra, M., Mouzna, J.: Gpsr-l: greedy perimeter stateless routing with lifetime for vanets. In: Proceedings of the IEEE International Conference on ITS Telecommunications (ITST) (2008)Google Scholar
  85. 85.
    Mauve, M., Füßler, H., Widmer, J., Lang, T.: Position-based multicast routing for mobile ad-hoc networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 7(3), 53–55 (2003)CrossRefGoogle Scholar
  86. 86.
    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., Mauve, M.: A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2003)Google Scholar
  87. 87.
    Karp, B.: Challenges in geographic routing: sparse networks, obstacles, and traffic provisioning. In: Presentation at the DIMACS Workshop on Pervasive Networking (2001)Google Scholar
  88. 88.
    Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad hoc networks. IEEE Netw. 15(6), 30–39 (2001)CrossRefGoogle Scholar
  89. 89.
    Balasubramanian, A., Levine, B.N., Venkataramani, A.: Replication routing in dtns: a resource allocation approach. IEEE/ACM Trans. Netw. (TON) 18(2), 596–609 (2010)CrossRefGoogle Scholar
  90. 90.
    Balasubramanian, A., Levine, B.N., Venkataramani, A.: Dtn routing as a resource allocation problem. In: ACM SIGCOMM Computer Communication Review, vol. 37, pp. 373–384. ACM (2007)Google Scholar
  91. 91.
    Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: Maxprop: routing for vehicle-based disruption-tolerant networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2006)Google Scholar
  92. 92.
    Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking (2005)Google Scholar
  93. 93.
    Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom) (2007)Google Scholar
  94. 94.
    Li, X., Shu, W., Li, M., Huang, H., Wu, M.-Y.: Dtn routing in vehicular sensor networks. In: Proceedings of the Global Telecommunications Conference (GLOBECOM) (2008)Google Scholar
  95. 95.
    Fall, K., Farrell, S.: Dtn: an architectural retrospective. IEEE J. Sel. Areas Commun. 26(5), 828–836 (2008)CrossRefGoogle Scholar
  96. 96.
    Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (2003)Google Scholar
  97. 97.
    Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control 37(12), 1936–1948 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Moeller, S., Sridharan, A., Krishnamachari, B., Gnawali, O.: Routing without routes: the backpressure collection protocol. In: Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks (2010)Google Scholar
  99. 99.
    Dai, J.G., Lin, W.: Asymptotic optimality of maximum pressure policies in stochastic processing networks. Ann. Appl. Probab. 18(6), 2239–2299 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Shah, D., Wischik, D.: Optimal scheduling algorithms for input-queued switches. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2006)Google Scholar
  101. 101.
    Naghshvar, M., Zhuang, H., Javidi, T.: A general class of throughput optimal routing policies in multi-hop wireless networks. IEEE Trans. Inf. Theory 58(4), 2175–2193 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Banirazi, R., Jonckheere, E., Krishnamachari, B.: Heat-diffusion: pareto optimal dynamic routing for time-varying wireless networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2014)Google Scholar
  103. 103.
    Banirazi, R., Jonckheere, E., Krishnamachari, B.: Dirichlet’s principle on multiclass multihop wireless networks: minimum cost routing subject to stability. In: Proceedings of the ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (2014)Google Scholar
  104. 104.
    Nunez-Martinez, J., Mangues-Bafalluy, J., Portoles-Comeras, M.: Studying practical any-to-any backpressure routing in wi-fi mesh networks from a lyapunov optimization perspective. In: Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS) (2011)Google Scholar
  105. 105.
    Alresaini, M., Sathiamoorthy, M., Krishnamachari, B., Neely, M.J.: Backpressure with adaptive redundancy (bwar). In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2012)Google Scholar
  106. 106.
    Nori, S., Deora, S., Krishnamachari, B.: Backip: backpressure routing in ipv6-based wireless sensor networks. USC CENG Technical report CENG-2014-01Google Scholar
  107. 107.
    Ghosh, P., Ren, H., Banirazi, R., Krishnamachari, B., Jonckheere, E.: Empirical evaluation of the heat-diffusion collection protocol for wireless sensor networks. Comput. Netw. 127, 217–232 (2017)CrossRefGoogle Scholar
  108. 108.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems (2009)Google Scholar
  109. 109.
    Ferrari, F., Zimmerling, M., Thiele, L., Saukh, O.: Efficient network flooding and time synchronization with glossy. In: Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks (2011)Google Scholar
  110. 110.
    Burri, N., Von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low power data gathering in sensor networks. In: Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks (2007)Google Scholar
  111. 111.
    Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wireless bus. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems (2012)Google Scholar
  112. 112.
    Winter, T., et al.: Rpl: Ipv6 Routing Protocol for Low-power and Lossy Networks, Mar 2012Google Scholar
  113. 113.
    Wang, S., Gasparri, A.: Krishnamachari, B: Robotic message ferrying for wireless networks using coarse-grained backpressure control. IEEE Trans. Mob. Comput. 99, 1–1 (2016)Google Scholar
  114. 114.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks (2005)Google Scholar
  116. 116.
    Franceschelli, M., Gasparri, A.: Gossip-based centroid and common reference frame estimation in multiagent systems. IEEE Trans. Robot. 30(2), 524–531 (2014)CrossRefGoogle Scholar
  117. 117.
    Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Yang, P., Freeman, R.A., Lynch, K.M.: Multi-agent coordination by decentralized estimation and control. IEEE Trans. Autom. Control 53(11), 2480–2496 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Guo, M., Zavlanos, M.M., Dimarogonas, D.V.: Controlling the relative agent motion in multi-agent formation stabilization. IEEE Trans. Autom. Control 59(3), 820–826 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Mohar, B., Alavi, Y.: The laplacian spectrum of graphs. Graph Theory Comb. Appl. 2, 871–898 (1991)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Godsil, C.D., Royle, G., Godsil, C,D.: Algebraic Graph Theory, vol. 207. Springer, New York (2001)Google Scholar
  123. 123.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: Connectedness preserving distributed Swarm aggregation for multiple kinematic robots. IEEE Trans. Robot. 24(5), 1213–1223 (2008)CrossRefGoogle Scholar
  124. 124.
    Notarstefano, G., Savla, K., Bullo, F., Jadbabaie, A.: Maintaining limited-range connectivity among second-order agents. In: Proceedings of the American Control Conference (ACC) (2006)Google Scholar
  125. 125.
    Savla, K., Notarstefano, G., Bullo, F.: Maintaining limited-range connectivity among second-order agents. SIAM J. Control Optim. 48(1), 187–205 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Spanos, D.P., Murray, R.M.: Robust connectivity of networked vehicles. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2004)Google Scholar
  127. 127.
    Yao, Z., Gupta, K.: Backbone-based connectivity control for mobile networks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2009)Google Scholar
  128. 128.
    Gustavi, T., Dimarogonas, D.V., Egerstedt, M., Hu, X.: Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks. Automatica 46(1), 133–139 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    DeGennaro, M.C., Jadbabaie, A.: Decentralized control of connectivity for multi-agent systems. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2006)Google Scholar
  130. 130.
    Dimarogonas, D.V., Johansson, K.H.: Bounded control of network connectivity in multi-agent systems. IET Control Theory Appl. 4(8), 1330–1338 (2010)MathSciNetCrossRefGoogle Scholar
  131. 131.
    Sabattini, L., Secchi, C., Chopra, N., Gasparri, A.: Distributed control of multirobot systems with global connectivity maintenance. IEEE Trans. Robot. 29(5), 1326–1332 (2013)CrossRefGoogle Scholar
  132. 132.
    Gasparri, A., Sabattini, L., Ulivi, G.: Bounded control law for global connectivity maintenance in cooperative multirobot systems. IEEE Trans. Robot. 33(3), 700–717 (2017)CrossRefGoogle Scholar
  133. 133.
    Michael, M.: Zavlanos, Alejandro Ribeiro, and George J Pappas. Network integrity in mobile robotic networks. IEEE Trans. Autom. Control 58(1), 3–18 (2013)CrossRefGoogle Scholar
  134. 134.
    Michael, M.: Zavlanos and George J Pappas. Distributed connectivity control of mobile networks. IEEE Trans. Robot. 24(6), 1416–1428 (2008)CrossRefGoogle Scholar
  135. 135.
    Michael, M.: Zavlanos and George J Pappas. Potential fields for maintaining connectivity of mobile networks. IEEE Trans. Robot. 23(4), 812–816 (2007)CrossRefGoogle Scholar
  136. 136.
    Michael, M.: Zavlanos, Magnus B Egerstedt, and George J Pappas. Graph-theoretic connectivity control of mobile robot networks. Proceedings of the IEEE 99(9), 1525–1540 (2011)CrossRefGoogle Scholar
  137. 137.
    Knorn, F., Stanojevic, R., Corless, M., Shorten, R.: A framework for decentralised feedback connectivity control with application to sensor networks. Int. J. Control 82(11), 2095–2114 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Schuresko, M., Cortés, J.: Distributed motion constraints for algebraic connectivity of robotic networks. J. Intell. Robot. Syst. 56(1–2), 99–126 (2009)zbMATHCrossRefGoogle Scholar
  139. 139.
    Manfredi, S.: An algorithm for fast rendezvous seeking of wireless networked robotic systems. Ad Hoc Netw. 11(7), 1942–1950 (2013)CrossRefGoogle Scholar
  140. 140.
    Gil, S., Feldman, D., Rus, D.: Communication coverage for independently moving robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  141. 141.
    Williams, R.K., Gasparri, A., Sukhatme, G.S., Ulivi, G.: Global connectivity control for spatially interacting multi-robot systems with unicycle kinematics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2015 )Google Scholar
  142. 142.
    Mostofi, Y.: Decentralized communication-aware motion planning in mobile networks: An information-gain approach. J. Intell. Robot. Syst. 56(1–2), 233–256 (2009)zbMATHCrossRefGoogle Scholar
  143. 143.
    Powers, M., Balch, T., et al.: Value-based communication preservation for mobile robots. In: 7th International Symposium on Distributed Autonomous Robotic Systems (2004)Google Scholar
  144. 144.
    Anderson, S.O., Simmons, R., Golberg, D.: Maintaining line of sight communications networks between planetary rovers. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (2003)Google Scholar
  145. 145.
    Tardioli, D., Mosteo, A.R., Riazuelo, L., Villarroel, J.L., Montano, L.: Enforcing network connectivity in robot team missions. Int. J. Robot. Res. 29(4), 460–480 (2010)CrossRefGoogle Scholar
  146. 146.
    Ning, B., Jin, J., Zheng, J., Law, Y.W.: Connectivity control and performance optimization in wireless robotic networks: Issues, approaches and a new framework. In: Proceedings of the 6th International Conference on Modelling, Identification & Control (ICMIC) (2014)Google Scholar
  147. 147.
    Wang, B.: Coverage Control in Sensor Networks. Springer Science & Business Media (2010)Google Scholar
  148. 148.
    Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  149. 149.
    Schwager, M., Julian, B.J., Rus, D.: Optimal coverage for multiple hovering robots with downward facing cameras. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2009)Google Scholar
  150. 150.
    Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1), 113–126 (2001)zbMATHCrossRefGoogle Scholar
  151. 151.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)CrossRefGoogle Scholar
  152. 152.
    Kantaros, Y., Zavlanos, M.M.: Communication-aware coverage control for robotic sensor networks. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2014)Google Scholar
  153. 153.
    Yan, Y., Mostofi, Y.: Communication and path planning strategies of a robotic coverage operation. In: Proceedings of the American Control Conference (ACC) (2013)Google Scholar
  154. 154.
    Ghaffarkhah, A., Mostofi, Y.: Optimal motion and communication for persistent information collection using a mobile robot. In: Proceedings of the IEEE Globecom Workshops (GC Wkshps) (2012)Google Scholar
  155. 155.
    Ghaffarkhah, A., Mostofi, Y.: Path planning for networked robotic surveillance. IEEE Trans. Signal Process. 60(7), 3560–3575 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Gonzalez-Ruiz, A., Mostofi, Y.: Cooperative robotic structure mapping using wireless measurements-a comparison of random and coordinated sampling patterns. IEEE Sens. J. 13(7), 2571–2580 (2013)CrossRefGoogle Scholar
  157. 157.
    Mostofi, Y.: Cooperative wireless-based obstacle/object mapping and see-through capabilities in robotic networks. IEEE Trans. Mob. Comput. 12(5), 817–829 (2013)CrossRefGoogle Scholar
  158. 158.
    Le Ny, J., Ribeiro, A., Pappas, G.J.: Adaptive communication-constrained deployment of unmanned vehicle systems. IEEE J. Sel. Areas Commun. 30(5), 923–934 (2012)CrossRefGoogle Scholar
  159. 159.
    Williams, R.K., Sukhatme, G.S.: Cooperative multi-agent inference over grid structured markov random fields. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011)Google Scholar
  160. 160.
    Gasparri, A., Krishnamachari, B., Sukhatme, G.S.: A framework for multi-robot node coverage in sensor networks. Ann. Math. Artif. Intell. 52(2), 281–305 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Hunkeler, U., Truong, H.L., Stanford-Clark, A.: Mqtt-s—a publish/subscribe protocol for wireless sensor networks. In: Proceedings of IEEE Conference on Communication systems software and middleware and workshops, (COMSWARE) (2008)Google Scholar
  162. 162.
    Jiang, W., Zefran, M.: Coverage control with information aggregation. In: Proceedings of the IEEE Conference on Decision and Control (CDC) (2013)Google Scholar
  163. 163.
    Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot teams. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2008)Google Scholar
  164. 164.
    Tekdas, O., Yang, W., Isler, V.: Robotic routers: algorithms and implementation. Int. J. Robot. Res. 29(1), 110–126 (2010)CrossRefGoogle Scholar
  165. 165.
    De Hoog, J., Cameron, S., Visser, A.: Dynamic team hierarchies in communication-limited multi-robot exploration. In: Proceedings of the IEEE International Workshop on Safety Security and Rescue Robotics (SSRR) (2010)Google Scholar
  166. 166.
    De Hoog, J., Cameron, S., Visser, A.: Selection of rendezvous points for multi-robot exploration in dynamic environments. In: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (2010)Google Scholar
  167. 167.
    De Hoog, J., Cameron, S., Visser, A.: Role-based autonomous multi-robot exploration. In: International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE) (2009)Google Scholar
  168. 168.
    Yan, Y., Mostofi, Y.: Robotic router formation-a bit error rate approach. In: Proceedings of the Military Communications Conference (MILCOM) (2010)Google Scholar
  169. 169.
    Yan, Y., Mostofi, Y.: Robotic router formation in realistic communication environments. IEEE Trans. Robot. 28(4), 810–827 (2012)CrossRefGoogle Scholar
  170. 170.
    Dixon, C., Frew, E.W.: Maintaining optimal communication chains in robotic sensor networks using mobility control. Mob. Netw. Appl. 14(3), 281–291 (2009)CrossRefGoogle Scholar
  171. 171.
    Goldenberg, D.K., Lin, J., Morse, A.S., Rosen, B.E., Yang, Y.R.: Towards mobility as a network control primitive. In: Proceedings of the ACM International Symposium on Mobile ad hoc networking and computing (MobiHoc) (2004)Google Scholar
  172. 172.
    Tekdas, O., Plonski, P.A., Karnad, N., Isler, V.: Maintaining connectivity in environments with obstacles. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  173. 173.
    Williams, R.K., Gasparri, A., Krishnamachari, B.: Route Swarm: Wireless network optimization through mobility. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)Google Scholar
  174. 174.
    Gil, S., Kumar, S., Katabi, D., Rus, D.: Adaptive communication in multi-robot systems using directionality of signal strength. Int. J. Robot. Res. 34(7), 946–968 (2015)CrossRefGoogle Scholar
  175. 175.
    Tuna, G., Nefzi, B., Conte, G.: Unmanned aerial vehicle-aided communications system for disaster recovery. J. Netw. Comput. Appl. 41, 27–36 (2014)CrossRefGoogle Scholar
  176. 176.
    Fida, A., Iqbal, M., Ngo, T.D.: Communication-and position-aware reconfigurable route optimization in large-scale mobile sensor networks. EURASIP J. Wirel. Commun. Netw. 2014(1), 1–20 (2014)CrossRefGoogle Scholar
  177. 177.
    Kennedy, J.: Particle Swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer (2011)Google Scholar
  178. 178.
    Curlander, J.C., McDonough, R.N.: Synthetic Aperture Radar. Wiley, New York, NY, USA (1991)zbMATHGoogle Scholar
  179. 179.
    Ghosh, P., Pal, R., Krishnamachari, B.: Towards controllability of wireless network quality using mobile robotic routers. In: CoRR (2016). arXiv:1607.07848
  180. 180.
    Ghosh, P., Krishnamachari, B.: Interference power bound analysis of a network of wireless robots. In: International Conference on Communication Systems and Networks, pp. 7–23. Springer, Cham (2017)Google Scholar
  181. 181.
    Chattopadhyay, A., Coupechoux, M., Kumar, A.: Sequential decision algorithms for measurement-based impromptu deployment of a wireless relay network along a line. IEEE/ACM Trans. Netw. 24(5), 2954–2968 (2016)CrossRefGoogle Scholar
  182. 182.
    Ghosh, A., Chattopadhyay, A., Arora, A., Kumar, A.: As-you-go deployment of a 2-connected wireless relay network for sensor-sink interconnection. In: Proceedings of the International Conference on Signal Processing and Communications (SPCOM) (2014)Google Scholar
  183. 183.
    Zavlanos, M.M., Ribeiro, A., Pappas, G.J.: A framework for integrating mobility and routing in mobile communication networks. In: Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2011)Google Scholar
  184. 184.
    Bezzo, N., Fierro, R., Swingler, A., Ferrari, S.: A disjunctive programming approach for motion planning of mobile router networks. Int. J. Robot. Autom. 26(1), 13 (2011)zbMATHGoogle Scholar
  185. 185.
    Chiu, H.C.H., Shen, W.-M.: Anchor-self-configuring robotic network. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO) (2010)Google Scholar
  186. 186.
    Jung, B., Sukhatme, G.S.: Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In: Proceedings of the International Conference on Intelligent Autonomous Systems (IAS) (2004)Google Scholar
  187. 187.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2001)Google Scholar
  188. 188.
    Papanikolopoulos, N.P., Khosla, P.K., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision. IEEE Trans. Robot. Autom. 9(1), 14–35 (1993)CrossRefGoogle Scholar
  189. 189.
    Lindström, M., Eklundh, J.: Detecting and tracking moving objects from a mobile platform using a laser range scanner. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2001)Google Scholar
  190. 190.
    Marković, I., Chaumette, F., Petrović, I.: Moving object detection, tracking and following using an omnidirectional camera on a mobile robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2014)Google Scholar
  191. 191.
    Prassler, E., Scholz, J., Elfes, A.: Tracking multiple moving objects for real-time robot navigation. Auton. Robots 8(2), 105–116 (2000)CrossRefGoogle Scholar
  192. 192.
    Yamano, K., Tanaka, K., Hirayama, M., Kondo, E., Kimuro, Y., Matsumoto, M.: Self-localization of mobile robots with rfid system by using support vector machine. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2004)Google Scholar
  193. 193.
    Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and localization with rfid technology. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2004)Google Scholar
  194. 194.
    Zhou, J., Shi, J.: Rfid localization algorithms and applications-a review. J. Intell. Manuf. 20(6), 695–707 (2009)CrossRefGoogle Scholar
  195. 195.
    Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)CrossRefGoogle Scholar
  196. 196.
    Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wirel. Netw. 11(1–2), 189–204 (2005)CrossRefGoogle Scholar
  197. 197.
    Ocana, M.S.J.N.M., Bergasa, L.M., Sotelo, M.A., Nuevo, J., Flores R.: Indoor robot localization system using wifi signal measure and minimizing calibration effort. In: Proceedings of the IEEE International Symposium on Industrial Electronics (2005)Google Scholar
  198. 198.
    Song, D., Kim, C.-Y., Yi, J.: Monte carlo simultaneous localization of multiple unknown transient radio sources using a mobile robot with a directional antenna. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2009)Google Scholar
  199. 199.
    Venkateswaran, S., Isaacs, J.T., Fregene, K., Ratmansky, R., Sadler, B.M., Hespanha, J.P., Madhow, U.: Rf source-seeking by a micro aerial vehicle using rotation-based angle of arrival estimates. In: Proceedings of the American Control Conference (ACC) (2013)Google Scholar
  200. 200.
    Palaniappan, R., Mirowski, P., Ho, T.K., Steck, H., Whiting, P., MacDonald, M.: Autonomous rf surveying robot for indoor localization and tracking. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2011)Google Scholar
  201. 201.
    Dantu, K., Goyal, P., Sukhatme, G.: Relative bearing estimation from commodity radios. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2009)Google Scholar
  202. 202.
    Deyle, T., Nguyen, H., Reynolds, M., Kemp, C.C.: Rf vision: Rfid receive signal strength indicator (rssi) images for sensor fusion and mobile manipulation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2009)Google Scholar
  203. 203.
    Wymeersch, H.: The impact of cooperative localization on achieving higher-level goals. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC) (2013)Google Scholar
  204. 204.
    Koutsonikolas, D., Das, S.M., Hu, Y.C., Lu, Y.-H., George Lee, C.S.: Cocoa: coordinated cooperative localization for mobile multi-robot ad hoc networks. In: Proceedings of the IEEE International Conference on Distributed Computing Systems Workshops (ICDCS) (2006)Google Scholar
  205. 205.
    Zickler, S., Veloso, M.: Rss-based relative localization and tethering for moving robots in unknown environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  206. 206.
    Filoramo, C., Gasparri, A., Pascucci, F., Priolo, A., Ulivi, G.: A rssi-based technique for inter-distance computation in multi-robot systems. In: Proceedings of the Mediterranean Conference on Control Automation (MED) (2010)Google Scholar
  207. 207.
    Oliveira, L., Li, H., Almeida, L., Abrudan, T.E.: Rssi-based relative localisation for mobile robots. Ad Hoc Netw. 13, 321–335 (2014)CrossRefGoogle Scholar
  208. 208.
    Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single wifi access point. In: Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2016)Google Scholar
  209. 209.
  210. 210.
    Gage, D.W.: Network protocols for mobile robot systems. In: Intelligent Systems & Advanced Manufacturing, pp. 107–118. International Society for Optics and Photonics (1998)Google Scholar
  211. 211.
    Fung, C.C., Eren, H., Nakazato, Y.: Position sensing of mobile robots for team operations. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IMTC) (1994)Google Scholar
  212. 212.
    Wilke, P., Bräunl, T.: Flexible wireless communication network for mobile robot agents. Ind. Robot Int. J. 28(3), 220–232 (2001)CrossRefGoogle Scholar
  213. 213.
    Thompson, E.A., McIntosh, C., Isaacs, J., Harmison, E., Sneary, R.: Robot communication link using 802.11 n or 900 MHz OFDM. J. Netw. Comput. Appl. 52, 37–51 (2015)CrossRefGoogle Scholar
  214. 214.
    Fai, Y.C., Amin, S.H.M., Fisal, N., Bakar, J.A.: Bluetooth enabled mobile robot. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT) (2002)Google Scholar
  215. 215.
    Heidemann, J., Ye, W., Wills, J., Syed, A., Li, Y.: Research challenges and applications for underwater sensor networking. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), vol. 1, pp. 228–235. IEEE (2006)Google Scholar
  216. 216.
    Ghosh, P., Jagadeesan, N.A., Sakulkar, P., Krishnamachari, B.: Loco: a location based communication scheme. In: MadCom: New Wireless Communication Paradigms for the Internet of Things (2017)Google Scholar
  217. 217.
    Zhang, Q., Cho, W., Sobelman, G.E., Yang, L., Voyles, R.: Twinsnet: a cooperative mimo mobile sensor network. In: Ubiquitous Intelligence and Computing, pp. 508–516. Springer (2006)Google Scholar
  218. 218.
    Hollinger, G.A., Choudhary, S., Qarabaqi, P., Murphy, C., Mitra, U., Sukhatme, G., Stojanovic, M., Singh, H., Hover, F.: Communication protocols for underwater data collection using a robotic sensor network. In: Proceedings of the IEEE GLOBECOM Workshops (GC Wkshps) (2011)Google Scholar
  219. 219.
    Pham, H., Jha, S.: An adaptive mobility-aware mac protocol for sensor networks (ms-mac). In: Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS) (2004)Google Scholar
  220. 220.
    Ali, M., Suleman, T., Uzmi, Z.A.: Mmac: a mobility-adaptive, collision-free mac protocol for wireless sensor networks. In: Proceedings of the IEEE International Performance, Computing, and Communications Conference (IPCCC) (2005)Google Scholar
  221. 221.
    Jhumka, A., Kulkarni, S.: On the design of mobility-tolerant tdma-based media access control (mac) protocol for mobile sensor networks. In: Distributed Computing and Internet Technology, pp. 42–53. Springer (2007)Google Scholar
  222. 222.
    Zhiyong, T., Dargie, W.: A mobility-aware medium access control protocol for wireless sensor networks. In: Proceedings of the IEEE GLOBECOM Workshops (GC Wkshps) (2010)Google Scholar
  223. 223.
    Gonga, A., Landsiedel, O., Johansson, M.: Mobisense: power-efficient micro-mobility in wireless sensor networks. In: Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) (2011)Google Scholar
  224. 224.
    Nabi, M., Blagojevic, M., Geilen, M., Basten, T., Hendriks, T.: Mcmac: an optimized medium access control protocol for mobile clusters in wireless sensor networks. In: Proceedings of the IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks (SECON) (2010)Google Scholar
  225. 225.
    Dong, Q., Dargie, W.: A survey on mobility and mobility-aware mac protocols in wireless sensor networks. IEEE Commun. Surv. Tutor. 15(1), 88–100 (2013)CrossRefGoogle Scholar
  226. 226.
    Ning, B., Jin, J., Zheng, J., Zhang, H.: Minimizing network interference through mobility control in wireless robotic networks. In: Proceedings of the International Conference on Control Automation Robotics & Vision (ICARCV) (2014)Google Scholar
  227. 227.
    Liu, P.X., Meng, M.Q.-H., Liu, P.R., Yang, S.X.: An end-to-end transmission architecture for the remote control of robots over ip networks. IEEE/ASME Trans. Mechatron. 10(5), 560–570 (2005)CrossRefGoogle Scholar
  228. 228.
    Uchimura, Y., Yakoh, T.: Bilateral robot system on the real-time network structure. IEEE Trans. Ind. Electron. 51(5), 940–946 (2004)CrossRefGoogle Scholar
  229. 229.
    Ping, L., Wenjuan, L., Zengqi, S.: Transport layer protocol reconfiguration for network-based robot control system. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control (2005)Google Scholar
  230. 230.
    Holland, G., Vaidya, N.: Analysis of tcp performance over mobile ad hoc networks. Wirel. Netw. 8(2/3), 275–288 (2002)zbMATHCrossRefGoogle Scholar
  231. 231.
    Harras, K.A., Almeroth, K.C.: Transport layer issues in delay tolerant mobile networks. In: Networking 2006. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems, pp. 463–475. Springer (2006)Google Scholar
  232. 232.
    Lochert, C., Scheuermann, B., Mauve, M.: A survey on congestion control for mobile ad hoc networks. Wirel. Commun. Mob. Comput. 7(5), 655–676 (2007)CrossRefGoogle Scholar
  233. 233.
    Parker, L.E.: Alliance: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1994)Google Scholar
  234. 234.
    Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The claraty architecture for robotic autonomy. In: Proceedings of IEEE Aerospace Conference (2001)Google Scholar
  235. 235.
    Arkin, R.C., Balch, T.: Cooperative multiagent robotic systems. Artificial Intelligence and Mobile Robots. MIT/AAAI Press, Cambridge, MA (1998)Google Scholar
  236. 236.
    Stoeter, S.A., Rybski, P.E., Erickson, M.D., Gini, M., Hougen, D.F., Krantz, D.G., Papanikolopoulos, N., Wyman, M.: A robot team for exploration and surveillance: design and architecture. In: Proceedings of the International Conference on Intelligent Autonomous Systems (IAS) (2000)Google Scholar
  237. 237.
    Sanfeliu, A., Andrade-Cetto, J.: Ubiquitous networking robotics in urban settings. In: Proceedings of the Workshop on Network Robot Systems. Toward Intelligent Robotic Systems Integrated with Environments (2006)Google Scholar
  238. 238.
    Sanfeliu, A., Hagita, N., Saffiotti, A.: Network robot systems. Robot. Auton. Syst. 56(10), 793–797 (2008)CrossRefGoogle Scholar
  239. 239.
    Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., Seo, B.-S., Cho, Y.-J.: The peis-ecology project: vision and results. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2008)Google Scholar
  240. 240.
    McClure, M., Corbett, D.R., Gage, D.W.L: The darpa landroids program. In: SPIE Defense, Security, and Sensing (2009)Google Scholar
  241. 241.
    Chaimowicz, L., Cowley, A., Gomez-Ibanez, D., Grocholsky, B., Hsieh, M.A., Hsu, H., Keller, J.F., Kumar, V., Swaminathan, R., Taylor, C.J.: Deploying air-ground multi-robot teams in urban environments. In: Multi-Robot Systems. From Swarms to Intelligent Automata Volume III, pp. 223–234. Springer (2005)Google Scholar
  242. 242.
    Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T.H., Nouyan, S., Ampatzis, C., Deneubourg, J.-L., Baldassarre, G., Nolfi, S., et al.: The swarm-bots project. In: Swarm Robotics, pp. 31–44. Springer (2005)Google Scholar
  243. 243.
    Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano, D.: Superlinear physical performances in a swarm-bot. In: Advances in Artificial Life, pp. 282–291. Springer (2005)Google Scholar
  244. 244.
    NECTAR: NEtworked Cooperative Teams of Autonomous Robots. http://webuser.unicas.it/nectar/
  245. 245.
    Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The i-swarm project: intelligent small world autonomous robots for micro-manipulation. In: Swarm Robotics, pp. 70–83. Springer. (2005)Google Scholar
  246. 246.
    Woern, H., Szymanski, M., Seyfried, J.: The i-swarm project. In: Proceedings of the IEEE International Symposium on Robot and Human interactive Communication (RO-MAN) (2006)Google Scholar
  247. 247.
  248. 248.
  249. 249.
  250. 250.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Pradipta Ghosh
    • 1
    Email author
  • Andrea Gasparri
    • 2
  • Jiong Jin
    • 3
  • Bhaskar Krishnamachari
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Universit degli studi “Roma Tre”RomaItaly
  3. 3.Swinburne University of TechnologyMelbourneAustralia

Personalised recommendations