Skip to main content

Next-Generation Software-Defined Wireless Charging System

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 164))

  • 837 Accesses

Abstract

Recent research in the emerging field of RF wireless energy transfer and harvesting has shortcomings such as low charging rates, and real-time adaptability and intelligent control to changing energy demands of the network. In this chapter, we introduce DeepCharge, a new architecture for next-generation wireless charging systems that act as an integrated hardware and software solution, and consists of software controller, programmable energy transmitters with distributed energy beamforming, and multiband energy harvesting circuits. DeepCharge realizes a software-defined wireless charging system through separation of controller, energy, and hardware planes. We demonstrate our indoor and outdoor prototypes with extensive experimental measurements, and discuss the RF exposure safety limits besides the most important research challenges toward next-generation DeepCharge-based wireless charging architectures and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plane-wave equivalent power density, which has both E-field and H-field components. Equivalent for far-field and near-field power density can be calculated based on: \(|E_{total}|^{2}/3770\,\mathrm{mW/cm}^{2}\), and \(|H_{total}|^{2}/37.7\, \mathrm{mW/cm}^{2}\).

References

  1. Evans, D.: Cisco Whitepaper on the Internet of Things: How the Next Evolution of the Internet is Changing Everything. (2011). http://www.cisco.com/

  2. IDC Report. Worldwide and regional Internet of Things (IoT) 2014–2020 forecast: A virtuous circle of proven value and demand. https://www.business.att.com

  3. Ericsson Mobility Report: On the pulse of the networked society. https://www.ericsson.com

  4. Lee, J.B., Chen, Z., Allen, M.G., Rohatgi, A., Arya, R.: A High Voltage Solar Cell Array As An Electrostatic MEMS Power Supply, MEMS94, IEEE Workshop Micro Electro Mechanical Systems, pp. 331–336 (1994)

    Google Scholar 

  5. Sangani, K.: Power solar-the sun in your pocket. Eng. Technol. 2(8), 3638 (2007)

    Google Scholar 

  6. Lin, K., Yu, J., Hsu, J., Zahedi, S., Lee, D., Friedman, J., Kansal, A., Raghunathan, V., Srivastava, M.: Heliomote: enabling long-lived sensor networks through solar energy harvesting, SenSys05. In: The 3rd International Conference on Embedded Networked Sensor Systems, Nov 2005

    Google Scholar 

  7. Balakumar, R., Vaidehi, V., Balamuralidhar, P.: Solar energy harvesting for wireless sensor networks, CICSYN09. In: The 1st International Conference on Computational Intelligence, Communication Systems and Networks, July 2009

    Google Scholar 

  8. Brunelli, D., Benini, L., Moser, C., Thiele, L.: In: An Efficient Solar Energy Harvester for Wireless Sensor Nodes, DATE08. Design, Automation and Test in Europe (2008)

    Google Scholar 

  9. Alippi, C., Galperti, C.: In: An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes, Circuits and Systems I: Regular Papers, IEEE Transactions, July 2008

    Google Scholar 

  10. Guilar, N., Chen, A., Kleeburg, T., Amirtharajah, R.: Integrated solar energy harvesting and storage, ISLPED06. In: The 2006 International Symposium on Low Power Electronics and Design, Oct 2006

    Google Scholar 

  11. Muncuk, U., Alemdar, K., Sarode, J.D., Chowdhury, K.R.: Multi-band Ambient RF energy harvesting circuit design for enabling battery-less sensors and IoTs. IEEE Internet Things J. (2018)

    Google Scholar 

  12. Paradiso, J.A.: Systems for human-powered mobile computing, DAC06. In: The 43rd Design Automation Conference, pp. 645–650, July 2006

    Google Scholar 

  13. Torah, R., Glynne-Jones, P., Tudor, M., ODonnell, T., Roy, S., Beeby, S.: Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas. Sci. Technol. 19, 8 (2008)

    Article  Google Scholar 

  14. Hayakawa, M.: Electric Wristwatch with Generator, U.S. Patent, 5 001 685, Mar 1991

    Google Scholar 

  15. Von Buren, T., Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S., Troster, G.: Optimization of inertial micropower generators for human walking motion, JSEN06. IEEE Sens. J. 6(1), 2838 (2006)

    Google Scholar 

  16. Leonov, C.R.V., Torfs, T., Fiorini, P., Van Hoof, C.: Thermoelectric converters of human warmth for self-powered wireless sensor nodes, JSEN07. IEEE Sens. J. 7, 650657 (2007)

    Article  Google Scholar 

  17. EE Times India. http://www.eetindia.co.in

  18. Leonov, V., Van Hoof, C., Vullers, R.J.M.: Thermoelectric and hybrid generators in wearable devices and clothes, BSN09. In: The 6th International Workshop on Body Sensors Networks, pp. 195–200 (2009)

    Google Scholar 

  19. Leonov, V., Fiorini, P.: Thermal matching of a thermoelectric energy scavenger with the ambience, ECT07. In: The 5th European Conference on Thermo-electrics, pp. 129–133, Sept 2007

    Google Scholar 

  20. Campana Escale, O.A.: Study of The Efficiency of Rectifying Antenna Systems for Electromagnetic Energy Harvesting, The Degree of Engineer Thesis. Escola Tecnica Superior d.Enginyeria de Telecomunicacio de Barcelona, Department de Teoria de Senyali Comunicacions, Spain, Oct 2010

    Google Scholar 

  21. Briles, S.D., Neagley, D.L., Coates, D.M., Freud, S.M.: Remote Down-hole Well Telemetry, U.S. Patent, No. 6766141 B1, July 2004

    Google Scholar 

  22. Lu, X., Wang, P., Niyato, D., Kim, D., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757789 (2015)

    Article  Google Scholar 

  23. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: Fun-damentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18(2), 14131452 (2016)

    Article  Google Scholar 

  24. Lu, X., Niyato, D., Wang, P., Kim, D.I.: Wireless charger networking for mobile devices: fundamentals, standards, and applications. IEEE Wirel. Commun. 22(2), 126135 (2015)

    Article  Google Scholar 

  25. Harrist, D.W.: Wireless Battery Charging System Using Radio Frequency Energy Harvesting, Master of Science Thesis, University of Pittsburgh, USA (2004)

    Google Scholar 

  26. Tentzeris, M.M., Kawahara, Y.: Novel energy harvesting technologies for ICT applications, SAINT08. In: IEEE International Symposium on Applications and the Internet, pp. 373–376 (2008)

    Google Scholar 

  27. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, Chichester, Sussex, UK (2003)

    Book  Google Scholar 

  28. Annala, A.L., Oy, I., Friedrich, U.: Passive Long Distance Multiple Access UHF RFID System, Palomar Project, European Commission, Public report, Project No. IST1999-10339, Nov 2002

    Google Scholar 

  29. Ba, H., Demirkol, I., Heinzelman, W.: Feasibility and benefits of passive RFID wake-up radios for wireless sensor networks, GLOBECOM10. In: IEEE Global Telecommunications Conference, Dec 2010

    Google Scholar 

  30. Ungan, T., Reindl, L.M.: Harvesting low ambient rf-sources for autonomous measurement systems, IMTC08. In: IEEE International Instrumentation and Measurement Technology Conference, Victoria, Vancouver Island, Canada, May 2008

    Google Scholar 

  31. Javaheri, H., Noubir, G.: iPoint: a platform-independent passive information kiosk for cell phones, SECON10. In: The 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, June 2010

    Google Scholar 

  32. Powercast Corporation. http://www.powercastco.com/

  33. Ettus Research. https://www.ettus.com/

  34. Muncuk, U., Mohanti, S., Alemdar, K., Naderi, M.Y., Chowdhury, K.R.: Software-defined wireless charging of internet of things using distributed beamforming. In: ACM Conference on Embedded Networked Sensor Systems (SenSys 2016), Demo Session, Nov 2016

    Google Scholar 

  35. Keyrouz, S., Visser, H.J., Tijhuis, A.G.: Ambient RF energy harvesting from DTV stations. In: Loughborough Antennas and Propagation Conference (2012)

    Google Scholar 

  36. Parks, A.N., Smith, J.R.: Sifting through the airwaves: efficient and scalable multiband RF harvesting. In: IEEE International Conference on RFID (IEEE RFID) (2014)

    Google Scholar 

  37. Park, J.-Y., Han, S.-M., Itoh, T.: A rectenna design with harmonic-rejecting circular-sector antenna. IEEE Antennas Wirel. Propag. Lett. 3(1), 52–54 (2004)

    Article  Google Scholar 

  38. Scorcioni, S., Larcher, L., Bertacchini, A., Vincetti, L., Maini, M.: An integrated RF energy harvester for UHF wireless powering applications. In: IEEE Wireless Power Transfer (WPT), Perugia, vol. 2013, pp. 92–95 (2013)

    Google Scholar 

  39. Le, T., Mayaram, K., Fiez, T.: Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 43(5), 1287–1302 (2008)

    Article  Google Scholar 

  40. Nintanavongsa, P., Muncuk, U., Lewis, D.R., Chowdhury, K.R.: Design optimization and implementation for RF energy harvesting circuits. IEEE JETCAS 2, 2433 (2012)

    Google Scholar 

  41. Pinuela, M., Mitcheson, P.D., Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 61(7), 27152726 (2013)

    Article  Google Scholar 

  42. London RF survey. http://www.londonrfsurvey.org

  43. Liu, Z., Zhong, Z., Guo, Y.X.: Enhanced dual-band ambient RF energy harvesting with ultra-wide power range. IEEE Microw. Wirel. Compon. Lett. 25(9), 630–632 (2015)

    Article  Google Scholar 

  44. Nishimoto, H., Kawahara, Y., Asami, T.: Prototype implementation of ambient RF energy harvesting wireless sensor networks. In: Sensors, 2010 IEEE, pp. 1282–1287, Nov. 2010

    Google Scholar 

  45. Vyas, R.J., Cook, B.B., Kawahara, Y., Tentzeris, M.M.: E-WEHP: a batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Trans Microw. Theory Tech. 61(6), 2491–2505 (2013)

    Article  Google Scholar 

  46. Shegita, R., Sasaki, T., Quan, D.M., Kawahara, Y., Vyas, R.J., Tentzeris, M.M., Asami, T.: Ambient RF energy harvesting sensor device with capacitor-leakage-aware duty cycle control. IEEE Sens. J. 13 (2013)

    Google Scholar 

  47. Parks, A.N., Sample, A.P., Zhao, Y., Smith, J.R.: A wireless sensing platform utilizing ambient RF energy. In: 2013 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Santa Clara, CA, pp. 160–162 (2013)

    Google Scholar 

  48. Keyrouz, S., Visser, H.J., Tijhuis, A.G.: Multi-band simultaneous radio frequency energy harvesting. In: 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, pp. 3058–3061 (2013)

    Google Scholar 

  49. P2110B Series 850–950 MHz Power Harvester Development Kit Powercast Corp. http://www.powercastco.com/products/development-kits/

  50. Masotti, D., Costanzo, A., Prete, M.D., Rizzoli, V.: Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system. In: IET Microwaves, Antennas & Propagation, vol. 7, no. 15, pp. 1254–1263, 10 Dec 2013

    Google Scholar 

  51. Pinuela, M., Mitcheson, P.D., Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 61(7), 2715–2726 (2013)

    Article  Google Scholar 

  52. Parks, A.N., Smith, J.R.: Active power summation for efficient multiband RF energy harvesting. IEEE MTT-S International Microwave Symposium, Phoenix, AZ 2015, 1–4 (2015)

    Google Scholar 

  53. Stoopman, M., Keyrouz, S., Visser, H.J., Philips, K., Serdijn, W.A.: Co-Design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE J. Solid-State Circuits 49(3), 622–634 (2014)

    Article  Google Scholar 

  54. Assimonis, S.D., Daskalakis, S.N., Bletsas, A.: Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks. IEEE Trans. Microw. Theory Tech. 64(4), 1327–1338 (2016)

    Article  Google Scholar 

  55. Yang, G., Ho, C.K., Guan, Y.L.: Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans. Signal Process. 62(14), 35653577 (2014)

    Article  MathSciNet  Google Scholar 

  56. Sun, Q., Zhu, G., Shen, C., Li, X., Zhong, Z.: Joint beamforming design and time allocation for wireless powered communication networks. IEEE Wirel. Commun. Lett. 18(10), 17831786 (2014)

    Google Scholar 

  57. Chen, X., Wang, X., Chen, X.: Energy-efficient optimization for wireless information and power transfer in large-scale mimo systems employing energy beamforming. IEEE Wirel. Commun. Lett. 2(6), 667670 (2013)

    Article  Google Scholar 

  58. Lee, S., Liu, L., Zhang, R.: Collaborative wireless energy and information transfer in interference channel. IEEE Trans. Wirel. Commun. 14(1), 545557 (2015)

    Google Scholar 

  59. Haque, I.T., Abu-Ghazaleh, N.: Wireless software defined networking: a survey and taxonomy. IEEE Commun. Surv. Tutor. 18(4), Feb 2016

    Google Scholar 

  60. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun. Surv. Tuts. 16(4), 2181–2206 (2014)

    Article  Google Scholar 

  61. Hakiria, A., Gokhale, A., Berthou, P., Schmidt, D.C., Gayraud, T.: Software-defined networking: challenges and research opportunities for future Internet. Comput. Netw. 75, 453471 (2014)

    Google Scholar 

  62. Macedo, D.F., Guedes, D., Vieira, L.F.M., Vieira, M.A.M., Nogueira, M.: Programmable networks-From software-defined radio to software-defined networking. IEEE Commun. Surv. Tutor. 17(2), 1102–1125, 2nd Quart (2015)

    Article  Google Scholar 

  63. Jagadeesan, A.N., Krishnamachari, B.: Software-defined networking paradigms in wireless networks: a survey. ACM Comput. Surv. 47(2), 111 (2014). Jan

    Google Scholar 

  64. Reza, M., Sivakumar, S., Nafarieh, A., Robertson, B.: A comparison of software defined network (SDN) implementation strategies. In: Proceedings of the 2nd International Workshop Survivable Robust Optical Network, Hasselt, Belgium, pp. 1050–1055, Jun 2014

    Google Scholar 

  65. Kreutz, D., Ramos, F.M.V., Verssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. In: Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76

    Article  Google Scholar 

  66. Akyildiz, I.F., Wang, P., Lin, S.-CH.: SoftAir: a software defined networking architecture for 5G wireless systems. Comput. Netw. J. 85, 1–18, July 2015

    Article  Google Scholar 

  67. Jain, S., Kumar, A., Alok, M., Mandal, S., Ong, J., Poutievski, L., Leon, S., Arjun, V., Venkata, S., Wanderer, J., Jim, Z., Zhou, J., Zhu, M., Zolla, J., Holzle, U., Stuart, S., Vahdat, A.: B4: experience with a globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev. 43(4) (2013)

    Article  Google Scholar 

  68. Akyildiz, I.F., Wang, P., Lin, S.-C.H.: SoftWater: Software-defined networking for next-generation underwater communication systems. Ad Hoc Netw. J. 46, 111 (2016)

    Article  Google Scholar 

  69. Cao, B., He, F., Li, Y., Wang, C., Lang, W.: Software defined virtual wireless network: framework and challenges. IEEE Netw. 29(4), 612, Jul/Aug 2015

    Google Scholar 

  70. Chen, L., Warner, J., Yung, P.L., Zhou, D., Heinzelman, W., Dermirkol, I., Muncuk, U., Chowdhury, K.R., Basagni, S.: REACH2-Mote: a range extending passive wake-up wireless sensor node. ACM Trans. Sens. Netw. 11(4) (2015)

    Article  Google Scholar 

  71. Kaushik, K., Mishra, D., De, S., Chowdhury, K.R., Heinzelman, W..: Low-Cost Wake-Up receiver for RF energy harvesting wireless sensor networks. IEEE Sens. J. 16(16) (2016)

    Article  Google Scholar 

  72. Cid-Fuentes, R.G., Naderi, M.Y., Basagni, S., Chowdhury, K., Cabellos-Aparicio, A., Alarcon, E.: On Signaling Power: Communications over Wireless Energy. IEEE INFOCOM, San Francisco, CA, USA (2016)

    Google Scholar 

  73. Cid-Fuentes, R.G., Naderi, M.Y., Basagni, S., Chowdhury, K.R., Cabellos-Aparicio, A., Alarcon, E.: An All-Digital Receiver for Low Power, Low Bit-Rate Applications Using Simultaneous Wireless Information and Power Transmission, IEEE ISCAS 2016, Montreal, Canada, May 2016

    Google Scholar 

  74. Naderi, M.Y., Chowdhury, K.R., Basagni, S., Heinzelman, W., De, S., Jana, S.: Surviving wireless energy interference in RF-harvesting sensor networks: an empirical study. In: IEEE SECON Workshop on Energy Harvesting Communications, Singapore (2014)

    Google Scholar 

  75. Kaushik, K., Mishra, D., De, S., Basagni, S., Heinzelman, W., Chowdhury, K.R., Jana, S.: Experimental Demonstration of Multi-Hop RF Energy Transfer. IEEE PIMRC, London, UK (2013)

    Book  Google Scholar 

  76. Doost, R., Chowdhury, K.R., DiFelice, M.: Routing and link layer protocol design for sensor networks with wireless energy transfer. In: Proceedings of IEEE Globecom, Miami, Fl (2010)

    Google Scholar 

  77. Chen, L., Cool, S., Ba, H., Heinzelman, W., Demirkol, I., Muncuk, U., Chowdhury, K.R., Basagni, S.: Range extension of passive wake-up radio systems through energy harvesting. In: Proceedings of IEEE ICC, Budapest, Hungary, June 2013

    Google Scholar 

  78. Naderi, M.Y., Chowdhury, K.R., Basagni, S.: Wireless sensor networks with RF energy harvesting: energy models and analysis. In: IEEE WCNC, Accepted, New Orleans, LA (2015)

    Google Scholar 

  79. Mishra, D., Kaushik, K., De, S., Basagni, S., Chowdhury, K.R., Jana, S., Heinzelman, W.: Implementation of multi-path energy routing. In: IEEE PIMRC, Washington DC, Sept 2014

    Google Scholar 

  80. Cid-Fuentes, R.G., Naderi, M.Y., Doost, R., Chowdhury, K.R., Cabellos-Aparicio, A., Alarcon, E.: Leveraging deliberately generated interferences for multi-sensor wireless RF power transmission. In: Proceedings of IEEE GLOBECOM, San Diego, CA, USA, p. 2015, Dec 2015

    Google Scholar 

  81. Naderi, M.Y., Basagni, S., Chowdhury, K.R.: Modeling the residual energy and lifetime of energy harvesting sensor nodes. In: Proceedigns of IEEE GLOBECOM, Anaheim, CA, USA, Dec 2012

    Google Scholar 

  82. De, S., Mishra, D., Chowdhury, K.R.: Charging time characterization for wireless RF energy transfer. IEEE Trans. Circuits Syst. II 64(4) (2015)

    Google Scholar 

  83. Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K.R., Heinzelman, W.: Smart RF energy harvesting communications: challenges and opportunities. IEEE Commun. Mag, Accept (2014)

    Google Scholar 

  84. Naderi, M.Y., Chowdhury, K.R., Basagni, S., Heinzelman, W., De, S., Jana, S.: Experimental study of concurrent data and wireless energy transfer for sensor networks. In: IEEE GLOBECOM, Austin, TX (2014)

    Google Scholar 

  85. Nintanavongsa, P., Naderi, M.Y., Chowdhury, K.R.: A dual-band wireless energy transfer protocol for heterogeneous sensor networks powered by RF energy harvesting. In: IEEE International Computer Science and Engineering Conference (ISCEC), Bangkok, Thailand, Sept 2013

    Google Scholar 

  86. Naderi, M.Y., Nintanavongsa, P., Chowdhury, K.R.: RF-MAC: a medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Trans. Wirel. Commun. 13(7), July 2014

    Article  Google Scholar 

  87. Coarasa, A.H., Nintanavongsa, P., Sanyal, S., Chowdhury, K.R.: Impact of mobile transmitter sources on radio frequency wireless energy harvesting. In: Proceedings of IEEE International Conference on Computing, Networking and Communications (ICNC), San Diego, CA, Jan 2013

    Google Scholar 

  88. FCC Radio Frequency Safety Guidelines. https://www.fcc.gov/general/radio-frequency-safety-0

  89. HPA-850 RF Bay Amplifier. http://rfbayinc.com/

  90. FCC RF Exposure Wireless Charging Apps v02. https://apps.fcc.gov/eas/comments/GetPublishedDocument.html?id=319&tn=270151

  91. FCC General RF Exposure Guidance v06, FCC publication number: 447498. https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?switch=P&id=20676

  92. Mudumbai, R., Hespanha, U.M.J., Barriac, G.: Distributed transmit beamforming using feedback control. IEEE Trans. Inf. Theory 411426 (2010 )

    Google Scholar 

  93. Mudumbai, R., Brown, D.R., Madhow, U., Poor, H.V.: Distributed transmit beamforming: challenges and recent progress. IEEE Commun. Mag. 47(2), 102110 (2009)

    Article  Google Scholar 

  94. Yan, H., Macias Montero, J.G., Akhnoukh, A., de Vreede, L.C.N., Burghart, J.N.: An integration scheme for RF power harvesting. In: The 8th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, Veldhoven, Netherlands (2005)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the funds available through the US National Science Foundation award CNS 1452628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yousof Naderi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousof Naderi, M., Muncuk, U., Chowdhury, K.R. (2019). Next-Generation Software-Defined Wireless Charging System. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-92384-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92384-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92383-3

  • Online ISBN: 978-3-319-92384-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics