Advertisement

Biodiversity and Disease Transmission

  • Serge MorandEmail author
Chapter
Part of the Advances in Environmental Microbiology book series (AEM, volume 5)

Abstract

Biodiversity changes associated with the anthropogenic alteration of natural environments have been hypothesized to enhance disease transmission and to facilitate the emergence of infectious diseases. This chapter reviews the various links that may occur between biodiversity and disease transmission on scales ranging from global to local and the likely ecological mechanisms. The consequences of land usage and land cover changes on disease transmission are formulated through the overall effects on biodiversity observed from long-term observatories. Habitat fragmentation should lead to reduced diversity of pathogen species and changes in pathogen prevalence as proposed by the “perturbation hypothesis.” However, habitat fragmentation that leads to increased edge, and increasing contacts between different communities of reservoirs and vectors, should increase disease transmission and pathogen prevalence according to the “pathogen pool diversity” hypothesis. Network analyses represent new tools to investigate disease transmission in a changing biodiversity context, i.e., changes in multiple hosts—multiple parasite interactions. Finally, this review advocates for manipulative experiments, theoretical studies, and long-term data collection in ecological observatories that will help in building scenarios of future health.

Keywords

Disease ecology Transmission ecology Land use/land cover Habitat fragmentation Dilution hypothesis Perturbation hypothesis Pathogen pool diversity 

Notes

Acknowledgments

This work was part of the BiodivHealthSEA project (http://www.biodivhealthsea.org) funded by the French ANR programme CP&ES (grant number ANR 11CPEL 002) and supported by the RTPI-CNRS INEE “Biodiversity, Health and Societies in Southeast Asia.”

Compliance with Ethical Standards

Funding

This study was funded by French ANR project FutureHealthSEA (grant number ANR-17-CE35-0003-01).

Conflict of Interest

Serge Morand declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272CrossRefGoogle Scholar
  2. Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367CrossRefPubMedCentralGoogle Scholar
  3. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  4. Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. J Am Med Assoc 281:61–66CrossRefGoogle Scholar
  5. Bailey RG (2014) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New YorkCrossRefGoogle Scholar
  6. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4:879–891CrossRefPubMedCentralPubMedGoogle Scholar
  7. Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J (2002) A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect 129:147–153CrossRefPubMedCentralPubMedGoogle Scholar
  8. Blasdell K, Cosson JF, Chaval Y, Herbreteau V, Douangboupha B, Jittapalapong S, Lundqvist A, Hugot JP, Morand S, Buchy P (2011) Rodent-borne hantaviruses in Cambodia, Lao PDR, and Thailand. EcoHealth 8:432–443CrossRefPubMedCentralGoogle Scholar
  9. Blasdell K, Duong V, Eloit M, Chretien F, Ly S, Hul V, Deubel V, Morand S, Buchy P (2016) Evidence of human infection by new arenaviruses endemic to SEA. elife 5:e13135CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bogich TL, Funk S, Malcolm TR, Chhun N, Epstein JH, Chmura AA, Kilpatrick AM, Brownstein JS, Hutchison OC, Doyle-Capitman C, Deaville R, Morse SS, Cunningham AA, Daszak P (2013) Using network theory to identify the causes of disease outbreaks of unknown origin. J R Soc Interface 10:20120904CrossRefPubMedCentralPubMedGoogle Scholar
  11. Bonds MH, Dobson AP, Keenan DC (2012) Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol 10:e1001456CrossRefPubMedCentralPubMedGoogle Scholar
  12. Bordes F, Morand S (2011) The impact of multiple infections on wild animal hosts: a review. Infect Ecol Epidemiol 1:1–10.  https://doi.org/10.3402/iee.v1i0.7346 CrossRefGoogle Scholar
  13. Bordes F, Blasdell K, Morand S (2015) Transmission ecology of rodent-borne diseases: new frontiers. Integr Zool 10:424–435CrossRefPubMedCentralPubMedGoogle Scholar
  14. Bordes F, Caron A, Blasdell K, de Garine Wichatitsky M, Morand S (2017) Forecasting potential emergence of zoonotic diseases in South-East Asia: network analysis identifies key rodent hosts. J Appl Ecol 54(3):691–700.  https://doi.org/10.1111/1365-2664.12804 CrossRefGoogle Scholar
  15. Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook L, Lunney D, Liu Y, McAlpine C (2013) Wildlife disease prevalence in human-modified landscapes. Biol Rev Camb Philos Soc 88:427–442CrossRefPubMedCentralPubMedGoogle Scholar
  16. Carver S, Kuenzi A, Bagamian KH, Mills JN, Rollin PE, Zanto SN, Douglass R (2011) A temporal dilution effect: hantavirus infection in deer mice and the intermittent presence of voles in Montana. Oecologia 166:713–721CrossRefPubMedCentralPubMedGoogle Scholar
  17. Cashdan E (2014) Biogeography of human infectious diseases: a global historical analysis. PLoS One 9:e106752CrossRefPubMedCentralPubMedGoogle Scholar
  18. Charles JK, Ang BB (2010) Non volant small mammal community responses to fragmentation of keang forests in Brunei Darussalam. Biodivers Conserv 19:543–561CrossRefGoogle Scholar
  19. Chen HW, Liu WC, Davis JA, Jordan F, Hwang MJ, Shao KT (2008) Network position of hosts in food webs and their parasite diversity. Oikos 117:1847–1855CrossRefGoogle Scholar
  20. Chivian E, Bernstein AS (2004) Embedded in nature: human health and biodiversity. Environ Health Perspect 112:12–13CrossRefGoogle Scholar
  21. Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S, Rohr JR (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA 112:8667–8671CrossRefPubMedCentralPubMedGoogle Scholar
  22. Daily GC, Ehrlich PR (1996) Global change and human susceptibility to disease. Annu Rev Energy Environ 21:125–144CrossRefGoogle Scholar
  23. Derne BT, Fearnley EJ, Lau CL, Paynter S, Weinstein P (2011) Biodiversity and leptospirosis risk: a case of pathogen regulation? Med Hypotheses 77:339–344CrossRefPubMedCentralPubMedGoogle Scholar
  24. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406CrossRefPubMedCentralGoogle Scholar
  25. Dobson AP (1995) The ecology and epidemiology of rinderpest virus in Serengeti and Ngorongoro crater conservation area. In: Sinclair ARE, Arcese P (eds) Serengetti II. Research management and conservation of an ecosystem. University of Chicago Press, Chicago, pp 485–505Google Scholar
  26. Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc Lond B 276:3037–3045CrossRefGoogle Scholar
  27. Dunn RR, Davies TJ, Harris NC, Galvin MC (2010) Global drivers of human pathogen richness and prevalence. Proc R Soc Lond B 277:2587–2595CrossRefGoogle Scholar
  28. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  29. Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420CrossRefPubMedCentralPubMedGoogle Scholar
  30. Fincher C, Thornhill R (2008) A parasite-driven wedge: infectious diseases may explain language and other biodiversity. Oikos 9:1289–1297CrossRefGoogle Scholar
  31. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990. Proc Natl Acad Sci USA 107:16732–16737CrossRefPubMedCentralPubMedGoogle Scholar
  32. Gillespie TR, Chapman CA (2008) Forest fragmentation, the decline of an endangered primate and changes in host-parasite interactions relative to an unfragmented forest. Am J Primatol 70:222–230CrossRefPubMedGoogle Scholar
  33. Gómez JM, Nunn CL, Verdú M (2013) Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc Natl Acad Sci USA 110:7738–7741CrossRefPubMedGoogle Scholar
  34. Goodin DG, Koch DE, Owen RD, Chu Y-K, Hutchinson JMS, Jonsson CB (2006) Land cover associated with hantavirus presence in Paraguay. Glob Ecol Biogeogr 15:519–527CrossRefGoogle Scholar
  35. Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619–632CrossRefPubMedGoogle Scholar
  36. Guernier V, Hochberg ME, Guégan JF (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biol 2:740–746CrossRefGoogle Scholar
  37. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE et al (2015) Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci Adv 1:e1500052CrossRefPubMedCentralPubMedGoogle Scholar
  38. Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210CrossRefGoogle Scholar
  39. Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol 32(1):55–67.  https://doi.org/10.1016/j.tree.2016.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hudson PJ, Rizzoli A, Grenfell BT et al (2002) The ecology of wildlife diseases. Oxford University Press, OxfordGoogle Scholar
  41. Hussain S, Ram MS, Kumar A, Shivaji S, Umapathy G (2013) Human presence increases parasitic load in endangered Lion-Tailed Macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS One 8:e63685CrossRefPubMedCentralPubMedGoogle Scholar
  42. Johnson PTJ, Ostfeld RS, Keesing F (2015) Frontiers in research on biodiversity and disease. Trends Ecol Evol 18:1119–1133Google Scholar
  43. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–994CrossRefPubMedCentralPubMedGoogle Scholar
  44. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY et al (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA 110:8399–8404CrossRefPubMedGoogle Scholar
  45. Jonsson CB, Figueiredo LTM, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23:412–441CrossRefPubMedCentralPubMedGoogle Scholar
  46. Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol Rev 89:123–134CrossRefPubMedCentralPubMedGoogle Scholar
  47. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Tiffany B, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652CrossRefPubMedCentralGoogle Scholar
  48. Keesing F, Ostfeld RS, Saale R (2015) Is biodiversity good for your health? Science 349:235–236CrossRefPubMedCentralPubMedGoogle Scholar
  49. Lafferty KD, Wood CL (2013) It’s a myth that protection against disease is a strong and general service of biodiversity conservation: response to Ostfeld and Keesing. Trends Ecol Evol 28:503–504CrossRefPubMedCentralPubMedGoogle Scholar
  50. Lass S, Hudson PJ, Thakar J, Saric J, Harvill E, Albert R, Sarah E, Perkins SE (2013) Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. J R Soc Interface 10:20120588CrossRefPubMedCentralPubMedGoogle Scholar
  51. Levi T, Kilpatrick MA, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci USA 109:10942–10947CrossRefPubMedCentralPubMedGoogle Scholar
  52. Lindahl J, Grace D (2015) The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 5:11Google Scholar
  53. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP et al (2009) Epidemic dynamics at the human-animal interface. Science 326:1362–1367CrossRefPubMedCentralPubMedGoogle Scholar
  54. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571CrossRefPubMedCentralPubMedGoogle Scholar
  55. Maffi L (2005) Linguistic, cultural and biological diversity. Annu Rev Anthropol 29:599–617CrossRefGoogle Scholar
  56. Mbora DNM, Mc Peek MA (2009) Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J Anim Ecol 78:210–218CrossRefPubMedCentralPubMedGoogle Scholar
  57. McFarlane R, Sleigh A, McMichael T (2012) Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9:24–35CrossRefPubMedCentralPubMedGoogle Scholar
  58. Mihaljevic JR, Joseph MB, Orlofske SA, Paull SH (2014) The scaling of host density with richness affects the direction, shape, and detectability of diversity-disease relationships. PLoS One 9:e97812CrossRefPubMedCentralPubMedGoogle Scholar
  59. Morand S (2015a) Diversity and origins of human infectious diseases. In: Muehlenbein MP (ed) Basics in human evolution. Elsevier, New York, pp 405–414CrossRefGoogle Scholar
  60. Morand S (2015b) (macro-)Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. Int J Parasitol Parasites Wildl 4:80–87CrossRefPubMedCentralPubMedGoogle Scholar
  61. Morand S, Lajaunie C (2017) Biodiversity conservation in Southeast Asia: challenges in a changing environment. Routledge EarthScan, OxonCrossRefGoogle Scholar
  62. Morand S, Owers K, Waret-Szkuta A, McIntyre KM, Baylis M (2013) Climate variability and outbreaks of infectious diseases in Europe. Nat Sci Rep 3:1774CrossRefGoogle Scholar
  63. Morand S, Jittapalapong S, Supputamongkol Y, Abdullah MT, Huan TB (2014a) Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One 9:e90032CrossRefPubMedCentralPubMedGoogle Scholar
  64. Morand S, McIntyre KM, Baylis M (2014b) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–87CrossRefPubMedCentralPubMedGoogle Scholar
  65. Morand S, Owers K, Bordes F (2014c) Biodiversity and emerging zoonoses. In: Akio Yamada A, Kahn LH, Kaplan B, Monath TP, Woodall J, Conti L (eds) Confronting emerging zoonoses: the one health paradigm. Springer, Tokyo, pp 27–41Google Scholar
  66. Morand S, Bordes F, Blasdell K, Pilosof S, Cornu J-F, Chaisiri K, Chaval Y, Cosson J-F, Claude J, Feyfant T, Herbreteau V, Dupuy S, Tran A (2015) Assessing the distribution of disease-bearing rodents in human-modified tropical landscapes. J Appl Ecol 52:784–794CrossRefGoogle Scholar
  67. Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc Lond B 365:3709–3718CrossRefGoogle Scholar
  68. Murray KA, Daszak P (2013) Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr Opin Virol 3:79–83CrossRefPubMedCentralPubMedGoogle Scholar
  69. Murray KA, Preston N, Allen T, Zambrana-Torrelio C, Hosseini PR, Daszak P (2015) Global biogeography of human infectious diseases. Proc Natl Acad Sci USA 112:12746–12751CrossRefPubMedCentralPubMedGoogle Scholar
  70. Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515CrossRefGoogle Scholar
  71. Orrock JL, Allan BF, Drost CA (2011) Biogeographic and ecological regulation of disease: prevalence of Sin Nombre virus in island mice is related to island area, precipitation, and predator richness. Am Nat 177:691–697CrossRefPubMedCentralPubMedGoogle Scholar
  72. Palma RE, Polop JJ, Owen RD, Mills JM (2012) Ecology of rodent-associated Hantaviruses in the Southern cone of South America: Argentina, Chile, Paraguay and Uruguay. J Wildl Dis 48:267–281CrossRefPubMedGoogle Scholar
  73. Pilosof S, Morand S, Krasnov BR, Nunn CL (2015) Potential parasite transmission in multi-host networks based on parasite sharing. PLoS One 10:e0117909CrossRefPubMedCentralPubMedGoogle Scholar
  74. Poisot T, Nunn C, Morand S (2014) Ongoing worldwide homogenization of human pathogens. BioRxiv.  https://doi.org/10.1101/009977
  75. Poulin R (2010) Network analysis shining light on parasite ecology and diversity. Trends Parasitol 26:492–498CrossRefPubMedGoogle Scholar
  76. Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139:847–863CrossRefPubMedGoogle Scholar
  77. Rohr JR, Dobson AP, Johnson PT, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change-disease. Trends Ecol Evol 26:270–277CrossRefPubMedCentralPubMedGoogle Scholar
  78. Salkeld DJ, Padgett K, Jones JH (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol Lett 16:679–686CrossRefPubMedGoogle Scholar
  79. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230CrossRefPubMedCentralPubMedGoogle Scholar
  80. Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619CrossRefGoogle Scholar
  81. Shirley SM, Kark S (2009) The role of species traits and taxonomic patterns in alien bird impacts. Glob Ecol Biogeogr 18:450–459CrossRefGoogle Scholar
  82. Smith KF, Sax DF, Gaines SD, Guernier V, Guégan JF (2007) Globalization of human infectious disease. Ecology 88:1903–1910CrossRefPubMedCentralPubMedGoogle Scholar
  83. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S (2014) Global rise in human infectious disease outbreaks. J R Soc Interface 11:20140950CrossRefPubMedCentralPubMedGoogle Scholar
  84. Springer YP, Hoekman D, Johnson PTJ et al (2016) Continental scale surveillance of infectious agents: tick-, mosquito-, and rodent-borne parasite sampling designs for NEON. Ecosphere e01271:7Google Scholar
  85. Suzán G, Marcé E, Giermakowski JT, Mills JN, Ceballos G, Ostfeld RS, Armien B, Pascale JM, Yates TL (2009) Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS One 4:e5461CrossRefPubMedCentralPubMedGoogle Scholar
  86. Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 3:e2488CrossRefPubMedCentralPubMedGoogle Scholar
  87. Tatem AJ, Rogers DJ (2006) Global transport networks and infectious disease spread. Adv Parasitol 62:293–343CrossRefPubMedCentralPubMedGoogle Scholar
  88. Telfer S, Bown KJ, Sekules R, Begon M, Hayden T, Birtles R (2005) Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology 130:661–668CrossRefPubMedCentralPubMedGoogle Scholar
  89. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243–246CrossRefPubMedCentralPubMedGoogle Scholar
  90. Vazquez DP, Poulin R, Krasnov BR, Shenbrot GI (2005) Species abundance and the distribution of specialization in host–parasite interaction networks. J Anim Ecol 74:946–955CrossRefGoogle Scholar
  91. Wells K, Smales LR, Kallo EKV, Pfeiffer M (2007) Impacts of rain-forest logging on helminth assemblages in small mammals (Muridae, Tupaiidae) from Borneo. J Trop Ecol 23:35–43CrossRefGoogle Scholar
  92. Werden L, Barker IK, Bowman J, Gonzales EK, Leighton PA, Lindsay LR, Jardine CM (2014) Geography, deer, and host biodiversity shape the pattern of lyme disease emergence in the Thousand Islands archipelago of Ontario, Canada. PLoS One 9:e85640CrossRefPubMedCentralPubMedGoogle Scholar
  93. White LA, Forester JD, Craft ME (2015) Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev 92:389–409CrossRefPubMedCentralPubMedGoogle Scholar
  94. Wilcox BA, Colwell RR (2005) Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. EcoHealth 2:244–257CrossRefGoogle Scholar
  95. Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS-CIRAD Kasetsart UniversityBangkokThailand

Personalised recommendations